Hello,
Thanks for posting your question here on brainly.
There are 3 ways heat energy can move:<span> Radiation, conduction, and convection.
</span>
However, your answer to this is most likely conduction
hope this helps:)
please let me know if it's correct.
Answer:
(c) The retention time would be higher (d) The retention time would be lower.
Explanation:
For the polar solutes which were separated using the hydrophilic interaction chromatography (HILIC) with a strongly polar bonded phase, the retention time would be higher if eluent were changed from 80 vol% to 90 vol% acetonitrile in water.
However, for the polar solutes which were separated using the normal-phase chromatography on bare silica with methyl t=butyl ether and 2-propanol solvent, the retention time would be lower if the eluent were changed from 40 vol% to 60 vol% 2-propanol.
Answer:
142.82 g
Explanation:
The following data were obtained from the question:
Volume of water = 12 mL
Volume of water + gold = 19.4 mL
Density of gol= 19.3 g/cm³
Mass of gold =.?
Next, we shall determine the volume of the gold. This can be obtained as follow:
Volume of water = 12 mL
Volume of water + gold = 19.4 mL
Volume of gold =.?
Volume of gold = (Volume of water + gold) – (Volume of water)
Volume of gold = 19.4 – 12
Volume of gold = 7.4 mL
Finally, we shall determine the mass of the gold as follow:
Note: 1 mL is equivalent to 1 cm³
Volume of gold = 7.4 mL
Density of gol= 19.3 g/cm³ = 19.3 g/mL
Mass of gold =?
Density = mass /volume
19.3 = mass of gold /7.4
Cross multiply
Mass of gold = 19.3 × 7.4
Mass of gold = 142.82 g
Therefore, the mass of the gold pebble is 142.82 g
Answer:
385.69 g of O₂
Solution:
The Balance Chemical equation for said reaction is as follow;
2 H₂ + O₂ → 2 H₂O
According to Equation,
4.032 g ( 2 mol) H₂ reacts to produce = 36.03 g (2 mol) of H₂O
So,
48.6 g H₂ on reaction will produce = X g of H₂O
Solving for X,
X = (48.6 g × 36.03 g) ÷ 4.032 g
X = 434.29 g of H₂O
It means that the H₂ provided is in Excess. Therefore, the yield of product (H₂O) is being controlled by O₂ (Limiting Reagent).
So, According to Equation,
36.03 g (2 mol) H₂O is produced by = 31.998 g (1 mol) of O₂
So,
434.29 g of H₂O will be produced by = X g of O₂
Solving for X,
X = (434.29 g × 31.998 g) ÷ 36.03 g
X = 385.69 g of O₂