Answer:
v = 15.65 m/s
Explanation:
We use conservation of mechanical energy between initial (i) and final (f) states:
Pi + KEi = Pf + KEf
At the top of the cave at the instant the bat starts to fall, there is only potential energy since the bat's velocity is zero.
Pi = m g h = 600 J
and the KEi = 0 J (no velocity)
Knowing the height of the cave's roof (12.8 m) , we can find the mass of the bat:
m = 600 J / (g 12.5) = 4.9 kg
Using conservation of mechanical energy, the final state is:
Pf + KEf = 600 J
with Pf = 0 (just touching the ground)
KEf= 1/2 4.9 (v^2)
and we solve for the velocity:
600 J = 0 + 1/2 4.9 (v^2)
v^2 = 600 * 2 / 4.9 = 244.9
v = 15.65 m/s
The gravitational acceleration at any distance r is given by

where G is the gravitational constant, M the Earth's mass and r is the distance measured from the center of the Earth.
The Earth's radius is
, so the meteoroid is located at a distance of:

And by substituting this value into the previous formula, we can find the value of g at that altitude:

The three main layers are the core, the mantle, and the crust. The core is divided into two parts, the liquid outer core, and the solid inner core. Together it is 3450 km thick. The mantle is 2100 km thick, and the crust is 35-70 km thick. Hope I helped!
Answer:

Explanation:
Momentum is the product of velocity and mass. The formula is:

We know the rock is falling. Its momentum is 200 kilograms meters per second and its velocity is 5 meters per second. Substitute the values into the formula.

We are solving for m, the mass. We must isolate the variable. It is being multiplied by 5 meters per second. The inverse of multiplication is division, so we divided both sides by 5.0 m/s.


The units of meters per second (m/s) cancel.


The falling rock has a mass of <u>40 kilograms.</u>
The answer is Strontium(Sr)