Static friction is the friction that exists between two or more solids that are not moving with a relative speed. To calculate the static friction coefficient we use the formula Fs=us × n where Fs is the static friction , us is the coefficient of static friction and the n is the normal force.
thus the coefficient of static friction will be 5 N÷ 25 N = 0.2
Hence 0.2 is the coefficient of static friction
Answer:
The formula for speed is speed=<u>d</u><u>i</u><u>s</u><u>t</u><u>a</u><u>n</u><u>c</u><u>e</u>
time
Explanation:
to work out what the units are for speed,you need to know the units for distance and time.In this example,distance is in metres(m) and time is in seconds (s) , so the units for speed is metre per second (m/s).
E. all of the above
An umbrella tends to move upward on a windy day because _<span>A. buoyancy increases with increasing wind speed </span>
<span>B. air gets trapped under the umbrella and pushes it up </span>
<span>C. the wind pushes it up </span>
<span>D. a low-pressure area is created on top of the umbrella </span>
Answer:
Explanation:
Force between two charges of q₁ and q₂ at distance d is given by the expression
F = k q₁ q₂ / d₂
Here force between charge q₁ = - 15 x 10⁻⁹ C and q₃ = 47 x 10⁻⁹ C when distance between them d = (1.66 - 1.24 ) = .42 mm
k = 1/ 4π x 8.85 x 10⁻¹²
putting the values in the expression
F = 1/ 4π x 8.85 x 10⁻¹² x - 15 x 10⁻⁹ x 47 x 10⁻⁹ /( .42 x 10⁻³)²
= 9 x 10⁹ x - 15 x 10⁻⁹ x 47 x 10⁻⁹ /( .42 x 10⁻³)²
= 35969.4 x 10⁻³ N .
force between charge q₂ = 34.5 x 10⁻⁹ C and q₃ = 47 x 10⁻⁹ C when distance between them d = ( 1.24 - 0 ) = 1.24 mm .
putting the values in the expression
F = 1/ 4π x 8.85 x 10⁻¹² x 34.5 x 10⁻⁹ x 47 x 10⁻⁹ /( .42 x 10⁻³)²
= 9 x 10⁹ x - 34.5 x 10⁻⁹ x 47 x 10⁻⁹ /( .42 x 10⁻³)²
= 82729.6 x 10⁻³ N
Both these forces will act in the same direction towards the left (away from the origin towards - ve x axis)
Total force = 118699 x 10⁻³
= 118.7 N.