Answer:
Both objects will undergo the same change in velocity
Explanation:
m = Mass of the Earth = 5.972 × 10²⁴ kg
G = Gravitational constant = 6.67 × 10⁻¹¹ m³/kgs²
r = Radius of Earth = 6371000 m
m = Mass of object
Any object which is falling has only the acceleration due to gravity.

The acceleration due to gravity on Earth is 9.81364 m/s²
So, the speeds of the objects will change at an equal rate of 9.81364 m/s² but the change will be negative when an object is thrown up.
Hence, both objects will undergo the same change in velocity.
The kinetic energy of any moving object is
K.E. = (1/2) (mass) (speed)² .
To use this simple formula, the 'mass' has to be in kilograms,
and the 'speed' has to be in meters-per-second.
You can see that we have a slight problem that has to be cleaned up:
The speed in the question is given in "kilometers per hour", but we'll
need it in "meters per second". So let's convert that right now:
(600 km/hour) x (1 hour / 3600 seconds) x (1000 meters / km)
= (600 x 1 x 1000 / 3600) (km-hour-meters / hour-second-km)
= 166.67 meters/second .
Now we're ready to plug numbers into the formula for K.E.
(1/2) (mass) (speed)²
= (1/2) (80,000 kg) (166.67 m/s)²
= (40,000 kg) (27,777.8 m²/s²)
= 1,111,111,111 kg-m²/s²
= 1.1... x 10⁹ Joules (choice D)