1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Bad White [126]
3 years ago
10

Light bulb 1 operates with a filament temperature of 2700 K whereas light bulb 2 has a filament temperature of 2100 K. Both fila

ments have the same emissivity, and both bulbs radiate the same power. Find the ratio A1/A2 of the filament areas of the bulbs.
Physics
1 answer:
Lemur [1.5K]3 years ago
6 0

Answer:

0.3659

Explanation:

The power (p) is given as:

P = AeσT⁴

where,

A =Area

e = transmittivity

σ = Stefan-boltzmann constant

T = Temperature

since both the bulbs radiate same power

P₁ = P₂

Where, 1 denotes the bulb 1

2 denotes the bulb 2

thus,

A₁e₁σT₁⁴ = A₂e₂σT₂⁴

Now e₁=e₂

⇒A₁T₁⁴ = A₂T₂⁴

or

\frac{A_1}{A_2} =\frac{T_{2}^{4}}{T_{1}^{4}}

substituting the values in the above question we get

\frac{A_1}{A_2} =\frac{2100_{2}^{4}}{2700_{1}^{4}}

or

\frac{A_1}{A_2} }=0.3659

You might be interested in
A 0.5 kg block of aluminum (caluminum=900j/kg⋅∘c) is heated to 200∘c. the block is then quickly placed in an insulated tub of co
Alex_Xolod [135]

To solve this problem, we should recall the law of conservation of energy. That is, the heat lost by the aluminium must be equal to the heat gained by the cold water. This is expressed in change in enthalpies therefore:

- ΔH aluminium = ΔH water

where ΔH = m Cp (T2 – T1)

The negative sign simply means heat is lost. Therefore we calculate for the mass of water (m):

- 0.5 (900) (20 – 200) = m (4186) (20 – 0)

m = 0.9675 kg

 

Using same mass of water and initial temperature, the final temperature T of a 1.0 kg aluminium block is:

- 1 (900) (T – 200) = 0.9675 (4186) (T – 0)

- 900 T + 180,000 = 4050 T

4950 T = 180,000

T = 36.36°C

 

The final temperature of the water and block is 36.36°C

4 0
3 years ago
Read 2 more answers
A tariff is another name for
Airida [17]

tax on importation so B

5 0
3 years ago
Read 2 more answers
What is the conclusion of coin and feather experiment? ​
valina [46]

Answer:

So the conclusion is that in presence of air net force acting downward reduces for feather and hence falls slower than coin. But in absence of air resistance, net downward force is just equal to force due to gravity which is same for both coin and feather and hence they fall down at the same rate.

5 0
3 years ago
1. A student is biking to school. She travels 0.7 km north, then realizes something has fallen out of her bag.
Snezhnost [94]

Explanation:

(a) Displacement of an object is the shortest path covered by it.

In this problem, a student is biking to school. She travels 0.7 km north, then realizes something has fallen out of her bag.  She travels 0.3 km south to retrieve her item. She then travels 0.4 mi north to arrive at school.

0.4 miles = 0.64 km

displacement = 0.7-0.3+0.64 = 1.04 km

(b) Average velocity = total displacement/total time

t = 15 min = 0.25 hour

v=\dfrac{1.04\ km}{0.25\ h}\\\\v=4.16\ km/h

Hence, this is the required solution.

8 0
3 years ago
‼️‼️ Please help, urgent ‼️‼️ (check photo)
Alex787 [66]

Answer: The force constant k is 10600 kg/s^2

Step by step:

Use the law of energy conservation. When the elevator hits the spring, it has a certain kinetic and a potential energy. When the elevator reaches the point of still stand the kinetic and potential energies have been transformed to work performed by the elevator in the form of friction (brake clamp) and loading the spring.

Let us define the vertical height axis as having two points: h=2m at the point of elevator hitting the spring, and h=0m at the point of stopping.

The total energy at the point h=2m is:

E_{tot}=E_{kin}+E_{pot}\\E_{tot}= \frac{1}{2}mv^2+mg\Delta h = \frac{1}{2}2000 kg 4^2\frac{m^2}{s^2}+2000kg\, 9.8\frac{m}{s^2}2m=55200\,kg\frac{m^2}{s^2}

The total energy at the point h=0m is:

E_{tot}=E_{kin}+E_{pot}+Work=0+0+ Work\\E_{tot} =F_{friction}\Delta h+\frac{1}{2}k (\Delta h)^2=17000N\cdot 2m+\frac{1}{2}k\cdot 2^2 m^2

The two Energy values are to be equal (by law of energy conservation), which allows us to determine the only unknown, namely the force constant k:

17000N\cdot 2m+\frac{1}{2}k\cdot 2^2 m^2 = 55200 \,kg\frac{m^2}{s^2}\\k = \frac{55200-34000}{2}\,\frac{kg}{s^2}=10600\frac{kg}{s^2}

5 0
3 years ago
Other questions:
  • Take another look at lines 2 and 3. Suppose you use distance and time between any pair of neighboring dots to calculate speed:
    7·2 answers
  • How much time would it take for the sound of thunder to travel 1,500 meters if sound travels at a speed of 330 m/sec?
    12·2 answers
  • A particle moving along the x-axis has a position given by x = (24t – 2.0t 3 ) m, where t is measured in s. What is the magnitud
    12·1 answer
  • What is the anode in an alkaline battery?
    5·2 answers
  • An object is dropped from a height H. During the final second of its fall, it traverses a distance of 53.2 m. What was H? An obj
    11·1 answer
  • What units should be used when measuring the mass of a ladybug?
    8·1 answer
  • 4. You run from your house to a friend's house that is 3 miles away. You then walk
    12·1 answer
  • Charlotte is driving at 66.5 mi/h and receives a text message. She looks down at her phone and takes her eyes off the road for 3
    15·1 answer
  • Which term refers to how often a person works out?
    6·1 answer
  • How does climate change?
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!