Answer:
P₂ = 1312.88 atm
Explanation:
Given data:
Initial temperature = 25°C
Initial pressure = 1250 atm
Final temperature = 40°C
Final pressure = ?
Solution:
Initial temperature = 25°C (25+273.15 = 298.15 K)
Final temperature = 40°C ( 40+273.15 = 313.15 k)
The pressure of given amount of a gas is directly proportional to its temperature at constant volume and number of moles.
Mathematical relationship:
P₁/T₁ = P₂/T₂
Now we will put the values in formula:
1250 atm / 298.15 K = P₂/313.15 K
P₂ = 1250 atm × 313.15 K / 298.15 K
P₂ = 391437.5 atm. K /298.15 K
P₂ = 1312.88 atm
For the first one.. the Reactant side is Zn+2HCl produces Zncl2 and H2... and it is balanced too
Answer:
Explanation:
What we need to do here is to determine the ratios by using the Rydberg equation starting with the transition to n1 = 1, 2,3, etc and see which one fits the data. Remember the question states that they are series and the wavelengths will be for increasing energy levels.
1/λ = Rh x ( 1/n₁² - 1/n₂²)
Lyman series ( n₁=1 and n₂= 2,3 etc) for the first two lines, the ratios will be:
1/λ₁ /1/λ₂ =(1/1 -1/ 2²) / (1/1 -1/ 3²) ⇒ 0.84 ≠ 0.74 (the first ratio)
For Balmer series n₁ = 2 and n₂ = 3,4,5, etc
1/λ₁ /1/λ₂ =(1/4 -1/3²) / (1/4 -1/4²) ⇒ 0.741 = 0.741 (match!)
Lets use the third line to check our answer:
1/λ₁ /1/λ₂ =(1/4 -1/3²) / (1/4 -1/5²) = 0.66
Hello!
To solve this problem, we will use the
Boyle's Law, which describes how pressure changes when volume changes and vice-versa. The equation for this law is the following one, and we'll clear for V2:

So, the final volume after increasing the pressure would be
2,7 L. That means that volume decreases when the pressure increases
Have a nice day!