Answer:
There are 118 plants that weight between 13 and 16 pounds
Step-by-step explanation:
For any normal random variable X with mean μ and standard deviation σ : X ~ Normal(μ, σ)
This can be translated into standard normal units by :
Let X be the weight of the plant
X ~ Normal( 15 , 1.75 )
To find : P( 13 < X < 16 )
= P( -1.142857 < Z < 0.5714286 )
= P( Z < 0.5714286 ) - P( Z < -1.142857 )
= 0.7161454 - 0.1265490
= 0.5895965
So, the probability that any one of the plants weights between 13 and 16 pounds is 0.5895965
Hence, The expected number of plants out of 200 that will weight between 13 and 16 = 0.5895965 × 200
= 117.9193
Therefore, There are 118 plants that weight between 13 and 16 pounds.
Answer:
Step-by-step explanation:
Confidence interval for the difference in the two proportions is written as
Difference in sample proportions ± margin of error
Sample proportion, p= x/n
Where x = number of success
n = number of samples
For the men,
x = 318
n1 = 520
p1 = 318/520 = 0.61
For the women
x = 379
n2 = 460
p2 = 379/460 = 0.82
Margin of error = z√[p1(1 - p1)/n1 + p2(1 - p2)/n2]
To determine the z score, we subtract the confidence level from 100% to get α
α = 1 - 0.95 = 0.05
α/2 = 0.05/2 = 0.025
This is the area in each tail. Since we want the area in the middle, it becomes
1 - 0.025 = 0.975
The z score corresponding to the area on the z table is 1.96. Thus, confidence level of 95% is 1.96
Margin of error = 1.96 × √[0.61(1 - 0.61)/520 + 0.82(1 - 0.82)/460]
= 1.96 × √0.0004575 + 0.00032086957)
= 0.055
Confidence interval = 0.61 - 0.82 ± 0.055
= - 0.21 ± 0.055
The median would decrease because the temperature given is lower than the median
Checking the <span>discontinuity at point -4
from the left f(-4) = 4
from the right f(-4) = (-4+2)² = (-2)² = 4
∴ The function is continues at -4
</span>
<span>Checking the <span>discontinuity at point -2
from the left f(-2) = </span></span><span><span>(-2+2)² = 0
</span>from the right f(-2) = -(1/2)*(-2)+1 = 2
∴ The function is jump discontinues at -2
</span>
<span>Checking the <span>discontinuity at point 4
from the left f(4) = </span></span><span><span>-(1/2)*4+1 = -1
</span>from the right f(4) = -1
but there no equality in the equation so,
</span><span>∴ The function is discontinues at 4
The correct choice is the second
point </span>discontinuity at x = 4 and jump <span>discontinuity at x = -2</span>