Answer: 0.294 mol of
present in the reaction vessel.
Explanation:
Initial moles of
= 0.682 mole
Initial moles of
= 0.440 mole
Volume of container = 2.00 L
Initial concentration of
Initial concentration of
equilibrium concentration of
The given balanced equilibrium reaction is,

Initial conc. 0.341 M 0.220 M 0 M
At eqm. conc. (0.341-x) M (0.220-x) M (2x) M
The expression for equilibrium constant for this reaction will be,
![K_c=\frac{[HBr]^2}{[Br_2]\times [H_2]}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BHBr%5D%5E2%7D%7B%5BBr_2%5D%5Ctimes%20%5BH_2%5D%7D)
we are given : (0.341-x) = 0.268 M
x= 0.073 M
Thus equilibrium concentration of
= (0.220-x) M = (0.220-0.073) M = 0.147 M
![[Br_2]=\frac{moles}{volume}\\0.147=\frac{xmole}{2.00L}\\\\x=0.294 mole](https://tex.z-dn.net/?f=%5BBr_2%5D%3D%5Cfrac%7Bmoles%7D%7Bvolume%7D%5C%5C0.147%3D%5Cfrac%7Bxmole%7D%7B2.00L%7D%5C%5C%5C%5Cx%3D0.294%20mole)
Thus there are 0.294 mol of
present in the reaction vessel.
Answer:
Metallic.
Explanation:
Hello,
In this case, when nickel and tin bond, the difference in their electronegativities results:

Such difference, in addition to the fact that nickel is a transition metal and tin a metal, will suggest that the predominant type of bond for this substance is metallic as the attractive force between the conduction of electrons and positively charged metal ions is present.
Best regards.
Answer:
The cyclist must be fed in order to continue to pedal because food will. provide him/her with energy to continue with it.
The decay of a radioactive isotope can be predicted using the formula: A = Ao[2^(-t/T_0.5)] where A is the amount after time t, Ao is the original amount and T_0.5 is the half-life. Using the equation and the given values, 0.888 g of the sample will remain after 72 minutes.
Answer:
All energy is made by the sun because without the sun there would be no humans to produce other energy