Elements Y and elements Z would have similar properties due to the fact that they both posses the same number of valence electrons. They both have a single valence electron that determines the corresponding elements bonding properties and the fact that it can either donate 1 valence electron to produce an ion that would be attracted to another atom, that is also an ion. Assuming that these elements are group 1 elements, they do not undergo in covalent bonding.
Answer:
There are 0,011 moles of hydrogen gas.
Explanation:
We use the ideal gas formula, with the constant R = 0.082 l atm / K mol. The STP conditions are : 1 atm pressure and 273 K temperature. Solve for the formula, n (number of moles):
PV=nRT ---> n= (PV)/(RT)
n= (1 atm x 0,25 L)/ (0,082 l atm/ K mol x 273 K)
<em>n= 0,011 mol</em>
Answer:
2.15 mg of uranium-238 decays
Explanation:
For decay of radioactive nuclide-

where N is amount of radioactive nuclide after t time,
is initial amount of radioactive nuclide and
is half life of radioactive nuclide
Here
,
and 
So,
so, N = 2.446 mg
mass of uranium-238 decays = (4.60-2.446) mg = 2.15 mg
Answer:
this one is hard
Explanation:
but it's iron because the sodium so yea there u go.
Hi!
The correct option would be 3.85x10^(24)
To find the number of atoms in 250g of potassium, we need to first calculate the number of atoms in
1 mole of Potassium = 39g which contains 6.022x10^(23) atoms of K
<em>(Avogadro's constant value for the amount of molecules/atoms in one mole of any substance)</em>
<em>Solution</em>
So as 39g of Potassium contains 6.022x10^(23) K atoms
1g of Potassium would contain 6.022x10^(23) / 39 = 1.544 x10^(22) atoms
So 250g of Potassium would contain 1.544x10^(22) x 250 = 3.86x10^(24) atoms