Answer:
0.0055 mol of N2O5 will remay after 7 min.
Explanation:
The reaction follows a first-order.
Let the concentration of N2O5 after 7 min be y
Rate = Ky = change in concentration of N2O5/time
K is rate constant = 6.82×10^-3 s^-1
Initial concentration of N2O5 = number of moles/volume = 2.1×10^-2/1.8 = 0.0117 M
Change in concentration = 0.0117 - y
Time = 7 min = 7×60 = 420 s
6.82×10^-3y = 0.0117 - y/420
0.0117 - y = 420×6.82×10^-3y
0.0117 - y = 2.8644y
0.0117 = 2.8644y + y
0.0117 = 3.8644y
y = 0.0117/3.8644 = 0.00303 M
Number of moles of N2O5 left = y × volume = 0.00303 × 1.8 = 0.0055 mol (to 2 significant digits)
Answer:
B = b -a/RT
C = b^2
a = 1.263 atm*L^2/mol^2
b = 0.03464 L/mol
Explanation:
In the given question, we need to express the van der Waals equation of state as a virial expansion in powers of 1/Vm and obtain expressions for B and C in terms of the parameters a and b. Therefore:
Using the van deer Waals equation of state:
With further simplification, we have:
Then, we have:
Therefore,
Using the expansion:
Therefore,
Thus:
equation (1)
Using the virial equation of state:
Thus:
equation (2)
Comparing equations (1) and (2), we have:
B = b -a/RT
C = b^2
Using the measurements on argon gave B = −21.7 cm3 mol−1 and C = 1200 cm6 mol−2 for the virial coefficients at 273 K.
[/tex] = 0.03464 L/mol
a = (b-B)*RT = (34.64+21.7)*(1L/1000cm^3)*(0.0821)*(273) = 1.263 atm*L^2/mol^2
Answer:
6.0 L
Explanation:
Use the dilution equation M1V1 = M2V2
M1 = 0.075 M
V1 = 200 L
M2 = 2.5 M
V2 = ?
Solve for V2 --> V2 = M1V1/M2
V2 = (0.075 M)(200 L) / (2.5 M) = 6.0 L
S and S²⁻ do not have the outer subshell fully filled with electrons.
Explanation:
We look at electronic configurations:
Ca 1s² 2s² 2p⁶ 3s² 3p⁶ 4s² - the outer subshell 4s² is fully-filled with electrons
S 1s² 2s² 2p⁶ 3s² 3p⁴ - the outer subshell 3p⁴ is not fully-filled with electrons
Zn²⁺ 1s² 2s² 2p⁶ 3s² 3p⁶ 3d¹⁰ 4s⁰ - here the 4s subshell is higher in energy than 3d subshell so will consider 3d¹⁰ the out subshell which is fully-filled with electrons
S²⁻ 1s² 2s² 2p⁶ 3s² 3p² - the outer subshell 3p² is not fully-filled with electrons
Ca²⁺ 1s² 2s² 2p⁶ 3s² 3p⁶ - the outer subshell 3p⁶ is fully-filled with electrons
Learn more about:
electron configurations
brainly.com/question/5524513
brainly.com/question/6991243
#learnwithBrainly
Carbon monoxide reacts with hemoglobin of the blood to form carboxyhemoglobin. The absorption of oxygen worsens, oxygen starvation develops. At a lethal dose, death occurs within 20 days.