If i’m correct it’s b, bouyance force.
Answer:
Before the equivalence point, conductivity is decreasing. After the equivalence point, conductivity is increasing
Explanation:
In solution H2SO3 produce H+ ions and SO3²⁻ ions. In the same way, NaOH produce Na⁺ and OH⁻ ions. The conductivity of a solution is directly proportional to the concentration of ions in a solution. During titration, you are adding more NaOH (That is, more Na⁺ and OH⁻ ions). But each moles of OH⁻ reacts with H⁺ ion producing H₂O. That means the moles of Na⁺ that you are adding = Moles of H⁺ are been consumed. The concentration of ions remains approximately constant. But, H⁺ ion conducts better than Na⁺ ion. That means before the equivalence point, conductivity is decreasing. But after the equivalence point you will add OH- ions in excess increasing ion concentration increasing the conductivity:
After equivalence point, conductivity is increasing.
Answer: 82.0 g/mole
Explanation:
Use the units to see that if we divide 1.64 grams by 0.0200 moles, we'll get a number that is grams/mole, the definition of formula mass.
1.64/0.0200 = 82.0 g/mole (3 sig figs)
We can't tell from this alone what the molecular formula might be, but C6H10 (cyclohexene) comes close (82.1 grams/mole).
Answer:
I'm pretty sure this is a question about your opinion so there is no wrong answer! Just think about the question and if you were in those shoes. There is no right or wrong answer! :)
Explanation:
Answer:
A. Molecules have finite volume.
Explanation:
Gases deviate from the ideal gas law at high pressures because its molecules have a finite volume.
Real gases have a finite volume which enables more interaction between the molecules while ideal gases are assumed not to have a finite volume or occupy space which is why it lacks any form of interaction between its molecules.
This difference is the deviation between the real and ideal gases.