1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
-Dominant- [34]
4 years ago
14

A 25.0 mL sample of a solution of an unknown compound is titrated with a 0.115 M NaOH solution. The titration curve above was ob

tained with pH at equivalence point of around 8. The unknown compound is ________.
Chemistry
1 answer:
Mnenie [13.5K]4 years ago
3 0

Answer:

Weak acid

Explanation:

A titration curve is a graphical description of the change in pH of the solution in the conical flask as the reagent is added from the burette. A titration curve can be plotted for the different kinds of acid and base titrations. The volume of the titrant is always plotted as the independent variable and the pH of the solution as the dependent variable. The equivalence point is read off from the titration curve. A titration curve is very important because it shows the pH at various points during the titration.

A weak acid/strong base titration leads to an equivalence point above 7. From the question, we were told that the pH at equivalence point lies around 8. Hence the unknown substance must be a weak acid.

You might be interested in
Consider the following reaction at a high temperature. Br2(g) ⇆ 2Br(g) When 1.35 moles of Br2 are put in a 0.780−L flask, 3.60 p
UNO [17]

Answer : The equilibrium constant K_c for the reaction is, 0.1133

Explanation :

First we have to calculate the concentration of Br_2.

\text{Concentration of }Br_2=\frac{\text{Moles of }Br_2}{\text{Volume of solution}}

\text{Concentration of }Br_2=\frac{1.35moles}{0.780L}=1.731M

Now we have to calculate the dissociated concentration of Br_2.

The balanced equilibrium reaction is,

                              Br_2(g)\rightleftharpoons 2Br(aq)

Initial conc.         1.731 M      0

At eqm. conc.      (1.731-x)    (2x) M

As we are given,

The percent of dissociation of Br_2 = \alpha = 1.2 %

So, the dissociate concentration of Br_2 = C\alpha=1.731M\times \frac{1.2}{100}=0.2077M

The value of x = 0.2077 M

Now we have to calculate the concentration of Br_2\text{ and }Br at equilibrium.

Concentration of Br_2 = 1.731 - x  = 1.731 - 0.2077 = 1.5233 M

Concentration of Br = 2x = 2 × 0.2077 = 0.4154 M

Now we have to calculate the equilibrium constant for the reaction.

The expression of equilibrium constant for the reaction will be :

K_c=\frac{[Br]^2}{[Br_2]}

Now put all the values in this expression, we get :

K_c=\frac{(0.4154)^2}{1.5233}=0.1133

Therefore, the equilibrium constant K_c for the reaction is, 0.1133

7 0
3 years ago
Ameaba is which protozoan​
Vikki [24]

Answer: genus

Explanation:

Amoebas do not form a single taxonomic group; instead, they are found in every major lineage of eukaryotic organisms. Amoeboid cells occur not only among the protozoa, but also in fungi, algae, and animals.

4 0
4 years ago
Read 2 more answers
A jet flies over the ocean. A sound wave travels from the jet to the surface of the ocean. Almost none of the energy from the so
lutik1710 [3]
We need to see the diagram
6 0
4 years ago
If 8.50 g of phosphorus reacts with hydrogen gas at 2.00 atm in a 10.0-L container at 298 K, calculate the moles of PH3 produced
ahrayia [7]

Answer:

The moles of PH₃ produced are 0.2742 and the total number of moles of gas present at the end of the reaction is 0.6809.

Explanation:

Phosphorus reacts with H₂ according to the balanced equation:

P₄ (s) + 6 H₂ (g) ⇒ 4 PH₃ (g)

By stoichiometry of the reaction (that is, the relationship between the amount of reagents and products in a chemical reaction), the following amounts of each compound participate in the reaction:

  • P₄: 1 mole
  • H₂: 6 moles
  • PH₃:4 moles

Being the molar mass of the compounds:

  • P₄: 124 g/mole
  • H₂: 2 g/mole
  • PH₃: 34 g/mole

The following mass amounts of each compound participate in the reaction:

  • P₄: 1 mole* 124 g/mole= 124 g
  • H₂: 6 mole* 2 g/mole= 12 g
  • PH₃: 4 moles* 34 g/mole= 136 g

An ideal gas is characterized by three state variables: absolute pressure (P), volume (V), and absolute temperature (T). The relationship between them constitutes the ideal gas law, an equation that relates the three variables if the amount of substance, number of moles n, remains constant and where R is the molar constant of the gases:

P * V = n * R * T

In this case you know:

  • P= 2 atm
  • V= 10 L
  • n= ?
  • R= 0.082 \frac{atm*L}{mol*K}
  • T= 298 K

Replacing:

2 atm*10 L= n*0.082 \frac{atm*L}{mol*K} *298 K

and solving you get:

n=\frac{2 atm*10 L}{0.082\frac{atm*L}{mol*K}*298 K }

n=0.818 moles

The limiting reagent is one that is consumed first in its entirety, determining the amount of product in the reaction. When the limiting reagent is finished, the chemical reaction will stop.

To determine the limiting reagent, you can use a simple rule of three as follows: if 6 moles of H₂ react with 124 g of P₄, 0.818 moles of H₂ with how much mass of P₄ will it react?

mass of P_{4}=\frac{0.818 moles of H_{2}*124 grams of P_{4}}{6 moles of H_{2}}

mass of P₄= 16.90 grams

But 16.90 grams of P₄ are not available, 8.50 grams are available. Since you have less mass than you need to react with 0.818 moles of H₂, phosphorus P₄ will be the limiting reagent.

Then you can apply the following rules of three:

  • If 124 grams of P₄ produce 4 moles of PH₃, 8.50 grams of P₄, how many moles do they produce?

moles of PH_{3} =\frac{8.5 grams of P_{4}*4 moles of PH_{3}  }{124grams of P_{4}}

moles of PH₃=0.2742

  • If 124 grams of P₄ react with 6 moles of H₂, 8.50 grams of P₄ with how many moles of H₂ do they react?

moles of H_{2} =\frac{8.5 grams of P_{4}*6 moles of H_{2}  }{124grams of P_{4}}

moles of H₂= 0.4113

If you have 0.818 moles of H₂, the number of moles of gas H₂ present at the end of the reaction is calculated as:

0.818 - 0.4113= 0.4067

Then the total number of moles of gas present at the end of the reaction will be the sum of the moles of PH₃ gas and H₂ gas that did not react:

0.2742 + 0.4067= 0.6809

Finally, <u><em>the moles of PH₃ produced are 0.2742 and the total number of moles of gas present at the end of the reaction is 0.6809.</em></u>

5 0
3 years ago
What is the relationship between temperature and kinetic energy?
ad-work [718]

Answer:

substance is related to the average kinetic energy of the particles of that substance

Explanation:

4 0
3 years ago
Read 2 more answers
Other questions:
  • Energy is expended when a force moves matter across a distance.
    13·1 answer
  • HURRY ! the BEST I will give the brainliest​ ! Show you solution
    14·1 answer
  • Denver wonders if adding salt to water will make it boil at a lower temperature. What should he do next in order to follow the s
    10·2 answers
  • Which field of study includes several laws that describe how energy transfer
    12·2 answers
  • If 73.5 grams of FeS2 is allowed to react with 44 grams of O2 according to the following equation, how many grams of Fe2O3 are p
    10·2 answers
  • There are two naturally occurring isotopes of chlorine. 35 Cl has a mass of 34.9689 u. 37 Cl has a mass of 36.9659 u. Determine
    10·1 answer
  • What happens when an acid and alkali react
    8·2 answers
  • 20 mL of 80°C water is mixed with 20 mL of 0°C water in a perfect calorimeter. What is the final temperature?
    7·1 answer
  • How many moles of helium are needed to fill a balloon to a volume of 5.3 L at 22 ℃ and 632 mmHg?
    13·1 answer
  • What is the name for potassium oxide's structure? Give two properties of potassium oxide.
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!