When the specific heat capacity of the water is 4.18 J/g.°C so, we are going to use this formula to get the heat for cooling three phases changes from steam to liquid and from liquid to ice (solid) :
when Q = M*C*ΔT
Q is the heat in J
and M is the mass in gram = 1 mol H2O * 18 g/mol(molar mass) = 18 g
C is the specific heat J/g.°C
ΔT is the change in temperature
Q = Mw *[ ( Csteam * ΔTsteam)+(Cw*ΔTw) + (Cice * ΔT ice)]
= 18 g * [(2.01 * (155-100°C)) + (4.18 * (100-0°C)) + (2.09 * (0 - 55 °C))]
∴Q = 7444.8 J
and when we know that the heat of fusion for water = 334J/g
and heat of vaporization for water = 2260J/g
∴Q for the two phases changes = M * (2260+334)
= 18 * (2260+334)
= 46692 J
∴ Q total = 7444.8 + 46692 = 54136.8 J
Answer:
Grams of mercury= 0.06 g of Hg
Note: The question is incomplete. The complete question is as follows:
A compact fluorescent light bulb contains 4 mg of mercury. How many grams of mercury would be contained in 15 compact fluorescent light bulbs?
Explanation:
Since one fluorescent light bulb contains 4 mg of mercury,
15 such bulbs will contain 15 * 4 mg of mercury = 60 mg
1 mg = 0.001 g
Therefore, 60 mg = 0.001 g * 60 = 0.06 g of mercury.
Compact fluorescent lightbulbs (CFLs) are tubes containing mercury and noble gases. When electricity is passed through the bulb, electron-streams flow from a tungsten-coated coil. They collide with mercury atoms, exciting their electrons and creating flashes of ultraviolet light. A phosphor coating on the inside of the tube absorbs this UV light flashes and re-emits it as visible light. The amount of mercury in a fluorescent lamp varies from 3 to 46 mg, depending on lamp size and age.
Animals contribute water mainly through breathing, perspiration and urination. ... When droplets of sweat evaporate from the surface of an animal's skin, they take a bit of the animal's body heat with them. They also turn into water vapor and enter the water cycle, just like water evaporating from plant leaves.