Answer:
B. Water will freeze
<em>because</em><em> </em><em>the</em><em> </em><em>latent</em><em> </em><em>heat</em><em> </em><em>of</em><em> </em><em>vapourization</em><em> </em><em>decreases</em><em>.</em>
Methane gas and chlorine gas react to form hydrogen chloride gas and carbon tetrachloride gas. What volume of hydrogen chloride would be produced by this reaction if 3.16 L of chlorine were consumed at STP.
Be sure your answer has the correct number of significant digits.
Answer: Thus volume of carbon tetrachloride that would be produced is 0.788 L
Explanation:
According to ideal gas equation:

P = pressure of gas = 1 atm (at STP)
V = Volume of gas = 3.16 L
n = number of moles = ?
R = gas constant =
T =temperature =



According to stoichiometry:
4 moles of chlorine produces = 1 mole of carbon tetrachloride
Thus 0.141 moles of methane produces =
moles of carbon tetrachloride
volume of carbon tetrachloride =
Thus volume of carbon tetrachloride that would be produced is 0.788 L
I think the answer is False.
Explanation:
A) fission: Iodine-140 (atomic number = 53)
B) fusion: 1 neutron
C) fission: Uranium-233 (atomic number = 92)
Answer:
See explanation
Explanation:
In Bohr's theory, electrons are found in specific regions in space called orbits. These orbits are also called energy levels. An electron may move from one energy level to another by absorbing or emitting energy.
In the wave mechanical model, electrons are not found in a particular region in space according to Heisenberg's uncertainty principle.
We rather define a certain region in space where there is a high probability of locating the electron. This region in space where there is a high probability of locating the electron is called an orbital.
Hence, in the Bohr's model of the atom,electrons can surely be found in orbits while in the wave mechanical model, the orbital is a probability function that describes a region in space where an electron may be found.