The third reason helped Rutherford to discover the nucleus.
Answer:
The bee's energy output can be calculated directly, and related to its size. it only needs enough air resistance to counter its weight and enough power in its wings to sustain this resistance. it bee like that.
Answer:- Formula of the hydrate is
and it's name is Iron(III)sulfate pentahydrate.
Solution:- As per the given information, there is 18.4% water in the hydrate. If we assume the mass of the hydrate as 100 grams then there would be 18.4 grams of water and 81.6 grams of Iron(III)sulfate present in the hydrate.
Molar mass for Iron(III)sulfate is 399.88 gram per mol and the molar mass for water is 18.02 gram per mol.
We will calculate the moles of Iron(III)sulfate and water present in the compound on dividing their grams by their molar masses as:

= 

= 
Now, the next step is to calculate the mol ratio and for this we divide the moles of each by the least one of them means whose moles are less. Here, the moles of Iron(III)sulfate are less than moles of water. So, we divide the moles of each by 0.204.
= 1
= 5
There is 1:5 mol ratio between Iron(III)sulfate and water. So, the formula of the hydrate is
and the name of the hydrate is Iron(III)sulfate pentahydrate.
Answer:
collide less often and with less force
Answer:
Data is not valid
Explanation:
When two liquids having different temperatures are mixed, regardless of the volumes, the final mix temperature will ALWAYS be between the initial temperature values.
1st Law Thermo => Law of Conservation of Energy => Energy can not be created nor destroyed, only changed in form. Mixing 22°C with 75°C will NOT result in a mix having a final temperature of 80°C.
∑ΔE = 0 => (mcΔT)₁ + (mcΔT)₂ = 0
[(20g)(1cal/g·°C)(Tₓ - 22°C)] + [(80g)(1cal/g·°C)(Tₓ - 75°C)] = 0
=> 20(Tₓ - 22) + 80(Tₓ - 75) = 0
=> 20Tₓ - 440 + 80Tₓ - 75 = 0
=> 100Tₓ = 440 + 75 = 515
=> Tₓ = (515/100)°C = 51.5°C final mix temperature