Answer: The solution will remain yellow.
Explanation:
Answer:
Option D. KBr < KCl < NaCl
Explanation:
We'll begin by calculating the number of mole of each sample.
This can be obtained as follow:
For NaCl:
Mass = 1 g
Molar mass of NaCl = 23 + 35.5 = 58.5 g/mol
Mole of NaCl =?
Mole = mass /Molar mass
Mole of NaCl = 1/58.5
Mole of NaCl = 0.0171 mole
For Kbr:
Mass = 1 g
Molar mass of KBr = 39 + 80 = 119 g/mol
Mole of KBr =?
Mole = mass /Molar mass
Mole of KBr = 1/119
Mole of KBr = 0.0084 mole
For KCl:
Mass = 1 g
Molar mass of KCl = 39 + 35.5 = 74.5 g/mol
Mole of KCl =?
Mole = mass /Molar mass
Mole of KCl = 1/74.5
Mole of KCl = 0.0134 mole
Summary
Sample >>>>>>>> Number of mole
NaCl >>>>>>>>>> 0.0171
KBr >>>>>>>>>>> 0.0084
KCl >>>>>>>>>>> 0.0134
Arranging the number of mole of the sampl in increasing order, we have:
KBr < KCl < NaCl
Answer:

Explanation:
They gave us the masses of two reactants and asked us to determine the mass of the product.
This looks like a limiting reactant problem.
1. Assemble the information
We will need a chemical equation with masses and molar masses, so, let's gather all the information in one place.
Mᵣ: 239.27 32.00 207.2
2PbS + 3O₂ ⟶ 2Pb + 2SO₃
m/g: 2.54 1.88
2. Calculate the moles of each reactant

3. Calculate the moles of Pb from each reactant

4. Calculate the mass of Pb

Answer:
Nuclear fuel has a higher energy density than fossil fuel
Answer:
Neutral nucleophile are: H2O, CH3OH, NH3, RNH2, R2NH, R3N, RCOOH, RSH and PR3. The products by nucleophilic substitution are diverse depending on the different nucleophiles, obtaining alcohol, eter, amines, ester and tioeter considering only the nucleophiles with a hydrogen available.
Explanation:
Please see the images attached.
Nucleophilic subtitution with water occurs under Sn1 mechanism. That's it because water as nucleophile is so weak. With the other neutral nucleophiles, the reaction occur under Sn2 mechanism.
RSH + CH3I -----> RSCH3 + HI