Answer:
Im pretty sure its B. is released by salivary glands.
Explanation:
Option (B) is the right answer.
Hydronium ion (
) concentration decreases by the <u>factor of 100</u>, if the pH of a solution increases from 2.0 to 4.0.
<h3>What is pH?</h3>
The hydrogen ion concentration in water is expressed by pH. Specific to aqueous solutions, pH is the <u>negative logarithm</u> of the hydrogen ion (H+) concentration (mol/L) : ![pH = -log_{10}[H_{3}O^{+} ]](https://tex.z-dn.net/?f=pH%20%3D%20-log_%7B10%7D%5BH_%7B3%7DO%5E%7B%2B%7D%20%20%5D)
Acidic solutions are those with a pH under 7, and basic solutions are those with a pH over 7. At this temperature, solutions with a pH of 7 are neutral (e.g.<u> pure water</u>). The pH neutrality <u>relies on temperature, falling below 7 if the temperature rises above 25 °C</u>.
<h3>Given: </h3>
pH1( initial pH) = 2.0
pH2( initial pH) = 4.0
[H3O+] = initial hydronium concentration
[H3O+]* = final hydronium concentration
<h3>Formula used : </h3>
![pH = -log_{10}[H_{3}O^{+}]](https://tex.z-dn.net/?f=pH%20%3D%20-log_%7B10%7D%5BH_%7B3%7DO%5E%7B%2B%7D%5D)
<h3>Solution: </h3>
![pH = - log_{10}[H_{3}O^{+}] \\\\= > 10^{-pH} = [H_{3}O^{+}] \\\\similarly, \\\\10^{-pH} = [H_{3}O^{+}]*\\\\ = > 10^{-4} = [H_{3}O^{+}]*\\\\Now, \frac{[H_{3}O^{+}]*}{[H_{3}O^{+}]} = 10^{-2}](https://tex.z-dn.net/?f=pH%20%3D%20-%20log_%7B10%7D%5BH_%7B3%7DO%5E%7B%2B%7D%5D%20%5C%5C%5C%5C%3D%20%3E%2010%5E%7B-pH%7D%20%3D%20%5BH_%7B3%7DO%5E%7B%2B%7D%5D%20%5C%5C%5C%5Csimilarly%2C%20%5C%5C%5C%5C10%5E%7B-pH%7D%20%3D%20%5BH_%7B3%7DO%5E%7B%2B%7D%5D%2A%5C%5C%5C%5C%20%3D%20%3E%2010%5E%7B-4%7D%20%3D%20%5BH_%7B3%7DO%5E%7B%2B%7D%5D%2A%5C%5C%5C%5CNow%2C%20%5Cfrac%7B%5BH_%7B3%7DO%5E%7B%2B%7D%5D%2A%7D%7B%5BH_%7B3%7DO%5E%7B%2B%7D%5D%7D%20%20%3D%2010%5E%7B-2%7D)
Thus , the concentration of hydronium ion decreases by 100.
To learn more about pH :
brainly.com/question/15289741
#SPJ4
<span>When you add ice to hot water, some of the water’s heat melts the ice. The remaining heat warms the ice-cold water but cools the hot water in the process. You can calculate the mixture’s final temperature if you know how much hot water you started with, along with its temperature and how much ice you added. Two physical properties -- the specific heat and the heat of fusion -- determine exactly how the ice melts and the water cools.</span>
Reaction equation:
Al(OH)₃ + 3HCl → AlCl₃ + 3H₂O
Moles of Al(OH)₃:
moles = mass/Mr
= 1.51 / (27 + 17 x 3)
= 0.019
Molar ratio Al(OH)₃ : HCl = 1 : 3
Moles of HCl required = 0.019 x 3
=0.057
concentration = moles/volume
volume = 0.057 / 0.1
= 0.57 dm³
= 570 ml