Answer:
If 13.4 grams of nitrogen gas reacts we'll produce 16.3 grams of ammonia
Explanation:
Step 1: Data given
Mass of nitrogen gas (N2) = 13.4 grams
Molar mass of N2 = 28 g/mol
Molar mass of NH3 = 17.03 g/mol
Step 2: The balanced equation
N2 + 3H2 → 2NH3
Step 3: Calculate moles of N2
Moles N2 = Mass N2 / molar mass N2
Moles N2 = 13.4 grams / 28.00 g/mol
Moles N2 = 0.479 moles
Step 4: Calculate moles of NH3
For 1 mol N2 we need 3 moles H2 to produce 2 moles NH3
For 0.479 moles N2 we'll produce 2*0.479 = 0.958 moles
Step 5: Calculate mass of NH3
Mass of NH3 = moles NH3 * molar mass NH3
Mass NH3 = 0.958 moles * 17.03 g/mol
Mass NH3 = 16.3 grams
If 13.4 grams of nitrogen gas reacts we'll produce 16.3 grams of ammonia
Answer:
0.967mole
Explanation:
Given parameters:
Volume of NH₄Cl = 21.67L
Unknown:
Number of moles = ?
Solution:
We assume that the volume was taken at standard temperature and pressure,
Then;
Number of moles =
Number of moles = = 0.967mole
Answer:
His map of the ocean floor did not support his theory
Explanation:
- Alfred Wegner was a great scientist
- He observed the plate tectonics of earth and described it in a theory.
- It was dismissed after viewing his ocean floor
1.785714286 moles
The number of moles (n) for nitrogen is: [ n=50.0÷28.0 ] = 1.785714286 moles.
Answer:
The pH is equal to 4.41
Explanation:
Since HClO is a weak acid, its dissociation in aqueous medium is:
HClO ⇄ ClO- + H+
start: 0.05 0 0
change -x +x +x
balance 0.05-x x x
As it is a weak acid it dissociates very little, in its ClO- and H + ions, so the change is negative, where x is a degree of dissociation.
the acidity constant when equilibrium is reached is equal to:
The 0.05-x fraction can be approximated to 0.05, because the ionized fraction (x) is very small, therefore we have:
clearing the x and calculating its value we have:
the pH can be calculated by: