1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Anika [276]
3 years ago
6

4. A right triangle has one leg.

Mathematics
1 answer:
pochemuha3 years ago
4 0

Answer:

a^2 + b^2 = c ^2

a = first leg

b = second leg

c = hypothenuse

225 + b^2 = 625

b^2 = 400 -> b = 20 meters

You might be interested in
a high school student works two summer jobs . One at a coffee shop and one at a grocery store. The coffee shop pays 10$ an hour
Lostsunrise [7]
That's $600....so....he needs 200 more
..he'll need to work 3 hours at the grocery store...giving him a total of =252......and $852 gives him 52 extra dollars :)
3 0
3 years ago
A line passes through the point (2,3) and has a slope of -2. Which is the equation of the line in point-slope form?
almond37 [142]

Answer:

7-2x=y

Step-by-step explanation:

When a point passes through a line it satisfies its equation

(X-x0 )m= y-y0

Slope = m = -2

(X-2 )(-2)=y-3

4-2x=y-3

7-2x=y

7 0
3 years ago
Please help me :) ....
kvasek [131]
It’s c) XS, i love your pfp btw!! :)
8 0
3 years ago
The curve
kherson [118]

Answer:

Point N(4, 1)

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right  

Equality Properties

  • Multiplication Property of Equality
  • Division Property of Equality
  • Addition Property of Equality
  • Subtraction Property of Equality<u> </u>

<u>Algebra I</u>

  • Coordinates (x, y)
  • Functions
  • Function Notation
  • Terms/Coefficients
  • Anything to the 0th power is 1
  • Exponential Rule [Rewrite]:                                                                              \displaystyle b^{-m} = \frac{1}{b^m}
  • Exponential Rule [Root Rewrite]:                                                                     \displaystyle \sqrt[n]{x} = x^{\frac{1}{n}}

<u>Calculus</u>

Derivatives

Derivative Notation

Derivative of a constant is 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Derivative Rule [Chain Rule]:                                                                                    \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Step-by-step explanation:

<u>Step 1: Define</u>

<u />\displaystyle y = \sqrt{x - 3}<u />

<u />\displaystyle y' = \frac{1}{2}<u />

<u />

<u>Step 2: Differentiate</u>

  1. [Function] Rewrite [Exponential Rule - Root Rewrite]:                                   \displaystyle y = (x - 3)^{\frac{1}{2}}
  2. Chain Rule:                                                                                                        \displaystyle y' = \frac{d}{dx}[(x - 3)^{\frac{1}{2}}] \cdot \frac{d}{dx}[x - 3]
  3. Basic Power Rule:                                                                                             \displaystyle y' = \frac{1}{2}(x - 3)^{\frac{1}{2} - 1} \cdot (1 \cdot x^{1 - 1} - 0)
  4. Simplify:                                                                                                             \displaystyle y' = \frac{1}{2}(x - 3)^{-\frac{1}{2}} \cdot 1
  5. Multiply:                                                                                                             \displaystyle y' = \frac{1}{2}(x - 3)^{-\frac{1}{2}}
  6. [Derivative] Rewrite [Exponential Rule - Rewrite]:                                          \displaystyle y' = \frac{1}{2(x - 3)^{\frac{1}{2}}}
  7. [Derivative] Rewrite [Exponential Rule - Root Rewrite]:                                 \displaystyle y' = \frac{1}{2\sqrt{x - 3}}

<u>Step 3: Solve</u>

<em>Find coordinates</em>

<em />

<em>x-coordinate</em>

  1. Substitute in <em>y'</em> [Derivative]:                                                                             \displaystyle \frac{1}{2} = \frac{1}{2\sqrt{x - 3}}
  2. [Multiplication Property of Equality] Multiply 2 on both sides:                      \displaystyle 1 = \frac{1}{\sqrt{x - 3}}
  3. [Multiplication Property of Equality] Multiply √(x - 3) on both sides:            \displaystyle \sqrt{x - 3} = 1
  4. [Equality Property] Square both sides:                                                           \displaystyle x - 3 = 1
  5. [Addition Property of Equality] Add 3 on both sides:                                    \displaystyle x = 4

<em>y-coordinate</em>

  1. Substitute in <em>x</em> [Function]:                                                                                \displaystyle y = \sqrt{4 - 3}
  2. [√Radical] Subtract:                                                                                          \displaystyle y = \sqrt{1}
  3. [√Radical] Evaluate:                                                                                         \displaystyle y = 1

∴ Coordinates of Point N is (4, 1).

Topic: AP Calculus AB/BC (Calculus I/II)

Unit: Derivatives

Book: College Calculus 10e

4 0
3 years ago
Anybody know the answer for this?
Ne4ueva [31]
A. 

You can subtract values that are being divided in Sin waves. 
6 0
3 years ago
Other questions:
  • What does 3cm by 7cm mean
    8·2 answers
  • How to write (X+3)(x+5) in a equivalent expression
    9·2 answers
  • Passing through (2, - 2) and perpendicular to the line whose equation is y= 5x+2
    7·1 answer
  • Find the simplified quotient.
    7·2 answers
  • Ron is slicing 5 pizzas each pizza slice is 1/8 of the pizza. How many pizza slices will be there in all
    6·2 answers
  • What is the value of z in the question sin(4z) = cos(30 + 2z)?
    7·1 answer
  • Q and R are independent events. if P(Q)= 1/4 and P (R)= 1/5, find P(Q and R)
    13·1 answer
  • 6(4.5x-12)=9<br> A. X= 0.6<br> B. x = 28<br> C. x= 3<br> D. x= 3.3
    8·1 answer
  • Is 13/12 greater then 6/5?
    10·2 answers
  • How many solutions does this equation have 3x + 5 = 2x + 5 + x
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!