Answer:
12,345 tablets may be prepared from 1 kg of aspirin.
Step-by-step explanation:
The problem states that low-strength children’s/adult chewable aspirin tablets contains 81 mg of aspirin per tablet. And asks how many tablets may be prepared from 1 kg of aspirin.
Since the problem measures the weight of a tablet in kg, the first step is the conversion of 81mg to kg.
Each kg has 1,000,000mg. So
1kg - 1,000,000mg
xkg - 81mg.
1,000,000x = 81

x = 0.000081kg
Each tablet generally contains 0.000081kg of aspirin. How many such tablets may be prepared from 1 kg of aspirin?
1 tablet - 0.000081kg
x tablets - 1kg
0.000081x = 1

x = 12,345 tablets
12,345 tablets may be prepared from 1 kg of aspirin.
Answer:
8 meters per second
Step-by-step explanation:
l
Step-by-step explanation:

Given expression is

To, evaluate this limit, let we simplify numerator and denominator individually.
So, Consider Numerator

Clearly, if forms a Geometric progression with first term n and common ratio n respectively.
So, using Sum of n terms of GP, we get


Now, Consider Denominator, we have

can be rewritten as

![\rm \: = \: {n}^{n}\bigg[1 +\bigg[{\dfrac{n - 1}{n}\bigg]}^{n} + \bigg[{\dfrac{n - 2}{n}\bigg]}^{n} + - - - + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]](https://tex.z-dn.net/?f=%5Crm%20%5C%3A%20%20%3D%20%20%5C%3A%20%20%7Bn%7D%5E%7Bn%7D%5Cbigg%5B1%20%2B%5Cbigg%5B%7B%5Cdfrac%7Bn%20-%201%7D%7Bn%7D%5Cbigg%5D%7D%5E%7Bn%7D%20%2B%20%5Cbigg%5B%7B%5Cdfrac%7Bn%20-%202%7D%7Bn%7D%5Cbigg%5D%7D%5E%7Bn%7D%20%2B%20%20-%20%20-%20%20-%20%20%2B%20%5Cbigg%5B%7B%5Cdfrac%7B1%7D%7Bn%7D%5Cbigg%5D%7D%5E%7Bn%7D%20%5Cbigg%5D)
![\rm \: = \: {n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} + - - - + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]](https://tex.z-dn.net/?f=%5Crm%20%5C%3A%20%20%3D%20%20%5C%3A%20%20%7Bn%7D%5E%7Bn%7D%5Cbigg%5B1%20%2B%5Cbigg%5B1%20-%20%7B%5Cdfrac%7B1%7D%7Bn%7D%5Cbigg%5D%7D%5E%7Bn%7D%20%2B%20%5Cbigg%5B1%20-%20%7B%5Cdfrac%7B2%7D%7Bn%7D%5Cbigg%5D%7D%5E%7Bn%7D%20%2B%20%20-%20%20-%20%20-%20%20%2B%20%5Cbigg%5B%7B%5Cdfrac%7B1%7D%7Bn%7D%5Cbigg%5D%7D%5E%7Bn%7D%20%5Cbigg%5D)
Now, Consider

So, on substituting the values evaluated above, we get
![\rm \: = \: \displaystyle\lim_{n \to \infty} \frac{\dfrac{ {n}^{n} - 1}{1 - \dfrac{1}{n} }}{{n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} + - - - + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}](https://tex.z-dn.net/?f=%5Crm%20%5C%3A%20%20%3D%20%20%5C%3A%20%5Cdisplaystyle%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%20%20%5Cfrac%7B%5Cdfrac%7B%20%7Bn%7D%5E%7Bn%7D%20%20-%201%7D%7B1%20-%20%20%5Cdfrac%7B1%7D%7Bn%7D%20%7D%7D%7B%7Bn%7D%5E%7Bn%7D%5Cbigg%5B1%20%2B%5Cbigg%5B1%20-%20%7B%5Cdfrac%7B1%7D%7Bn%7D%5Cbigg%5D%7D%5E%7Bn%7D%20%2B%20%5Cbigg%5B1%20-%20%7B%5Cdfrac%7B2%7D%7Bn%7D%5Cbigg%5D%7D%5E%7Bn%7D%20%2B%20%20-%20%20-%20%20-%20%20%2B%20%5Cbigg%5B%7B%5Cdfrac%7B1%7D%7Bn%7D%5Cbigg%5D%7D%5E%7Bn%7D%20%5Cbigg%5D%7D%20)
![\rm \: = \: \displaystyle\lim_{n \to \infty} \frac{ {n}^{n} - 1}{{n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} + - - - + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}](https://tex.z-dn.net/?f=%5Crm%20%5C%3A%20%20%3D%20%20%5C%3A%20%5Cdisplaystyle%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%20%20%5Cfrac%7B%20%7Bn%7D%5E%7Bn%7D%20%20-%201%7D%7B%7Bn%7D%5E%7Bn%7D%5Cbigg%5B1%20%2B%5Cbigg%5B1%20-%20%7B%5Cdfrac%7B1%7D%7Bn%7D%5Cbigg%5D%7D%5E%7Bn%7D%20%2B%20%5Cbigg%5B1%20-%20%7B%5Cdfrac%7B2%7D%7Bn%7D%5Cbigg%5D%7D%5E%7Bn%7D%20%2B%20%20-%20%20-%20%20-%20%20%2B%20%5Cbigg%5B%7B%5Cdfrac%7B1%7D%7Bn%7D%5Cbigg%5D%7D%5E%7Bn%7D%20%5Cbigg%5D%7D%20)
![\rm \: = \: \displaystyle\lim_{n \to \infty} \frac{ {n}^{n}\bigg[1 - \dfrac{1}{ {n}^{n} } \bigg]}{{n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} + - - - + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}](https://tex.z-dn.net/?f=%5Crm%20%5C%3A%20%20%3D%20%20%5C%3A%20%5Cdisplaystyle%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%20%20%5Cfrac%7B%20%7Bn%7D%5E%7Bn%7D%5Cbigg%5B1%20-%20%5Cdfrac%7B1%7D%7B%20%7Bn%7D%5E%7Bn%7D%20%7D%20%5Cbigg%5D%7D%7B%7Bn%7D%5E%7Bn%7D%5Cbigg%5B1%20%2B%5Cbigg%5B1%20-%20%7B%5Cdfrac%7B1%7D%7Bn%7D%5Cbigg%5D%7D%5E%7Bn%7D%20%2B%20%5Cbigg%5B1%20-%20%7B%5Cdfrac%7B2%7D%7Bn%7D%5Cbigg%5D%7D%5E%7Bn%7D%20%2B%20%20-%20%20-%20%20-%20%20%2B%20%5Cbigg%5B%7B%5Cdfrac%7B1%7D%7Bn%7D%5Cbigg%5D%7D%5E%7Bn%7D%20%5Cbigg%5D%7D%20)
![\rm \: = \: \displaystyle\lim_{n \to \infty} \frac{\bigg[1 - \dfrac{1}{ {n}^{n} } \bigg]}{\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} + - - - + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}](https://tex.z-dn.net/?f=%5Crm%20%5C%3A%20%20%3D%20%20%5C%3A%20%5Cdisplaystyle%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%20%20%5Cfrac%7B%5Cbigg%5B1%20-%20%5Cdfrac%7B1%7D%7B%20%7Bn%7D%5E%7Bn%7D%20%7D%20%5Cbigg%5D%7D%7B%5Cbigg%5B1%20%2B%5Cbigg%5B1%20-%20%7B%5Cdfrac%7B1%7D%7Bn%7D%5Cbigg%5D%7D%5E%7Bn%7D%20%2B%20%5Cbigg%5B1%20-%20%7B%5Cdfrac%7B2%7D%7Bn%7D%5Cbigg%5D%7D%5E%7Bn%7D%20%2B%20%20-%20%20-%20%20-%20%20%2B%20%5Cbigg%5B%7B%5Cdfrac%7B1%7D%7Bn%7D%5Cbigg%5D%7D%5E%7Bn%7D%20%5Cbigg%5D%7D%20)
![\rm \: = \: \displaystyle\lim_{n \to \infty} \frac{1}{\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} + - - - + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}](https://tex.z-dn.net/?f=%5Crm%20%5C%3A%20%20%3D%20%20%5C%3A%20%5Cdisplaystyle%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%20%20%5Cfrac%7B1%7D%7B%5Cbigg%5B1%20%2B%5Cbigg%5B1%20-%20%7B%5Cdfrac%7B1%7D%7Bn%7D%5Cbigg%5D%7D%5E%7Bn%7D%20%2B%20%5Cbigg%5B1%20-%20%7B%5Cdfrac%7B2%7D%7Bn%7D%5Cbigg%5D%7D%5E%7Bn%7D%20%2B%20%20-%20%20-%20%20-%20%20%2B%20%5Cbigg%5B%7B%5Cdfrac%7B1%7D%7Bn%7D%5Cbigg%5D%7D%5E%7Bn%7D%20%5Cbigg%5D%7D%20)
Now, we know that,
![\red{\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{x \to \infty} \bigg[1 + \dfrac{k}{x} \bigg]^{x} = {e}^{k}}}}](https://tex.z-dn.net/?f=%5Cred%7B%5Crm%20%3A%5Clongmapsto%5C%3A%5Cboxed%7B%5Ctt%7B%20%5Cdisplaystyle%5Clim_%7Bx%20%5Cto%20%5Cinfty%7D%20%5Cbigg%5B1%20%2B%20%5Cdfrac%7Bk%7D%7Bx%7D%20%5Cbigg%5D%5E%7Bx%7D%20%20%3D%20%20%7Be%7D%5E%7Bk%7D%7D%7D%7D%20)
So, using this, we get

Now, in denominator, its an infinite GP series with common ratio 1/e ( < 1 ) and first term 1, so using sum to infinite GP series, we have





Hence,

Answer:
The slope of the line must be 3
Step-by-step explanation:
<u><em>The picture of the question in the attached figure</em></u>
step 1
we know that
The volume of a rectangular prism is equal to
----> equation A
where
B is the area of the base of the prism
h is the height of the rectangular prism
step 2
The volume of a square pyramid is equal to
-----> equation B
where
B is the area of the square base of pyramid
h is the height of the pyramid
step 3
substitute equation A in equation B

Find the relationship between the volume of a rectangular prism and the volume of a square pyramid

therefore
The slope of the line must be 3
let's check it
To solve for the slope of the line, you must choose two coordinates first and use the formula

Choosing the points (2,6) and (3,9)
substitute
----> is correct
It 42 units hopes this helps