Answer:
The correct answer is 
Explanation:
The formula for the electron drift speed is given as follows,

where n is the number of of electrons per unit m³, q is the charge on an electron and A is the cross-sectional area of the copper wire and I is the current. We see that we already have A , q and I. The only thing left to calculate is the electron density n that is the number of electrons per unit volume.
Using the information provided in the question we can see that the number of moles of copper atoms in a cm³ of volume of the conductor is
. Converting this number to m³ using very elementary unit conversion we get
. If we multiply this number by the Avagardo number which is the number of atoms per mol of any gas , we get the number of atoms per m³ which in this case is equal to the number of electron per m³ because one electron per atom of copper contribute to the current. So we get,

if we convert the area from mm³ to m³ we get
.So now that we have n, we plug in all the values of A ,I ,q and n into the main equation to obtain,

which is our final answer.
The presence of mass makes gravity. Doesn't matter whether it's a planet, a black hole, a puppy, or a speck of dust.
Answer:
Answer: It takes 5,730 years for half the carbon-14 to change to nitrogen; this is the half-life of carbon-14. After another 5,730 years only one-quarter of the original carbon-14 will remain
<span>CorrectThe direction of the electric field stays the same regardless of the sign of the charges that are free to move in theconductor.Mathematically, you can see that this must be true since the expression you derived for the electric field isindependent of .Physically, this is because the force due to the magnetic field changes sign as well and causes positive charges tomove in the direction (as opposed to pushing negative charges in the direction). Therefore the result isalways the same: positive charges on the side and negative charges on the side. Because the electric fieldgoes from positive to negative charges will always point in the direction (given the original directions of</span>