The apparent magnitude scale is a classification scheme which is based on the brightness of stars. The range of brightness values is from 1 to 6.
The stars which are the most brightest are ranked as number 1 and also called first magnitude stars, stars which are little dimmer than number 1 are ranked as number 2 and also called second magnitude stars. Similarly the most faintest stars are ranked number 6 and also called as the sixth magnitude stars.
Because you need to have a guess to know what to argue or explain in your experiment
It's gravitational potential energy at the top will roughly equal it's kinetic energy when it was released (a little is lost to air resistance). Note this will assume the release point is zero potential energy. (we are free to define it that way, just letting you know). Gravitational potential energy is mgh.
mgh=25J
h=25J/(0.5kg x 9.81m/s^2) = 5.097m
So it goes about 5.1 meters above the point where it was released
Answer:
C. The final kinetic energy is equal to the initial potential energy.
Explanation:
Based on the Principle of energy conservation:
Sum of the Initial Energy = Sum of the Final Energy
Initial Kinetic Energy + Initial Potential Energy = Final Kinetic Energy + Final Potential Energy..........(1)
Since according to the question:
Initial Kinetic Energy = 0
Final Potential Energy = 0
The equation (1) above reduces to
Initial Potential Energy = Final Kinetic Energy