ಠ_ಠ Hey, hang on.. you might've made a discovery. Nobody has tested it so how do we know? ಠ_ಠ
 
        
                    
             
        
        
        
1) <span>The function of the electron transport chain is to pump protons in the mitochondrion inter-membrane, thus building up a proton gradient. This gradient will allow the ATP syntheses</span><span>.</span>
2) Why we need oxygen for the electron transport chain:
 At the end of the electron transport chain is the Oxygen that will accept
electrons and picks up protons to form water. If the oxygen molecule is not there the electron transport chain
will stop running, and ATP will no longer be produced. Basically, we need the oxygen to produce more ATP.
        
             
        
        
        
Answer:
2081.65 m
Explanation:
We'll begin by calculating the time taken for the load to get to the target. This can be obtained as follow:
Height (h) = 3000 m
Acceleration due to gravity (g) = 10 m/s²
Time (t) =?
h = ½gt²
3000 = ½ × 10 × t²
3000 = 5 × t²
Divide both side by 5
t² = 3000 / 5
t² = 600
Take the square root of both side
t = √600
t = 24.49 s
Finally, we shall determine the distance from the target at which the load should be released. This can be obtained as follow:
Horizontal velocity (u) = 85 m/s
Time (t) = 24.49 s
Horizontal distance (s) =?
s = ut
s = 85 × 24.49
s = 2081.65 m
Thus, the load should be released from 2081.65 m. 
 
        
             
        
        
        
Bohr’s model showed that electron orbits had distinct radii.
 
        
                    
             
        
        
        
a) 0.26 h
b) 71.4 km
Explanation:
a)
In order to solve the problem, we have to know what is the final velocity of the car.
Here, we assume that the final velocity reached by the car is

Therefore, we can find the time taken by the car to reach this velocity by using the suvat equation:

where:
u = 250 km/h is the initial velocity
 is the acceleration of the car
 is the acceleration of the car
v = 300 km/h is the final velocity
t is the time
Solving for t, we find:

b)
In order to find the distance covered by the car, we can use the following suvat equation:

where:
s is the distance covered
u is the initial velocity
a is the acceleration
t is the time
For the car in this problem, we have:
u = 250 km/h
t = 0.26 h (calculated in part a)

Therefore, the distance covered is
