Answer:
F₂ = -7.3 N
Explanation:
Given that,
The mass of an object, m₁ = 3.7 kg
First force, F₁ = 11 N
The net acceleration of the object is 1 m/s².
We know that,
F₁+F₂ = ma
11+F₂ = (3.7)(1)
F₂ = 3.7-11
F₂ = -7.3 N
so, the other force is 7.3 N and it is acting in west direction.
When the object is at the top of the hill it has the most potential energy. If it is sitting still, it has no kinetic energy. As the object begins to roll down the hill, it loses potential energy, but gains kinetic energy. The potential energy of the position of the object at the top of the hill is getting converted into kinetic energy. Hope this helped. :)
Density is the mass of a substance per unit volume.
0.495 m/s
Explanation
the formula for the terminal velocity is given by:
![\begin{gathered} v=\sqrt[]{\frac{2mg}{\sigma AC}} \\ \text{where} \\ \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20v%3D%5Csqrt%5B%5D%7B%5Cfrac%7B2mg%7D%7B%5Csigma%20AC%7D%7D%20%5C%5C%20%5Ctext%7Bwhere%7D%20%5C%5C%20%20%5Cend%7Bgathered%7D)
m is the mass
g is 9.81 m/s²
ρ is density
A is area
C is the drag coefficient
then
Step 1
Let's find the mass

now, replace
![\begin{gathered} v=\sqrt[]{\frac{2mg}{\sigma AC}} \\ v=\sqrt[]{\frac{2(0.002kg)(9.81\text{ }\frac{m}{s^2})}{(2\cdot10^3\frac{\operatorname{kg}}{m^3})(0.0001m^2)0.8}} \\ v=\sqrt[]{\frac{0.03924\frac{\operatorname{kg}m}{s^2}}{0.16\frac{\operatorname{kg}}{m^{}}}} \\ v=\sqrt[]{0.2452\frac{m^2}{s^2}} \\ v=0.495\text{ m/s} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20v%3D%5Csqrt%5B%5D%7B%5Cfrac%7B2mg%7D%7B%5Csigma%20AC%7D%7D%20%5C%5C%20v%3D%5Csqrt%5B%5D%7B%5Cfrac%7B2%280.002kg%29%289.81%5Ctext%7B%20%7D%5Cfrac%7Bm%7D%7Bs%5E2%7D%29%7D%7B%282%5Ccdot10%5E3%5Cfrac%7B%5Coperatorname%7Bkg%7D%7D%7Bm%5E3%7D%29%280.0001m%5E2%290.8%7D%7D%20%5C%5C%20v%3D%5Csqrt%5B%5D%7B%5Cfrac%7B0.03924%5Cfrac%7B%5Coperatorname%7Bkg%7Dm%7D%7Bs%5E2%7D%7D%7B0.16%5Cfrac%7B%5Coperatorname%7Bkg%7D%7D%7Bm%5E%7B%7D%7D%7D%7D%20%5C%5C%20v%3D%5Csqrt%5B%5D%7B0.2452%5Cfrac%7Bm%5E2%7D%7Bs%5E2%7D%7D%20%5C%5C%20v%3D0.495%5Ctext%7B%20m%2Fs%7D%20%5Cend%7Bgathered%7D)
hence, the answer is 0.495 m/s
Heat is the answer but I need to use 20 characters to post :)