Answer:
650
Step-by-step explanation:
If you like my answer than please mark me brainliest thanks
Vă rugăm să găsiți imaginea întrebării atașate mai jos:
Răspuns:
A este proporțională
B este proporțională
C nu este proporțional
D este proporțional
E nu este proporțională
F este proporțional
Explicație pas cu pas:
Pentru a determina proporționalitatea:
Obținem constanta proporționalității
Pentru valorile din tabelul 1;
Luând primul punct:
x = 1; y = 5
1 α 5
1 = 5k
k = 1/5
Test:
y = 15
x = k * y
x = 1/5 * 15; x = 3
Prin urmare; (a) este proporțională
B.)
x = 2; y = 6
2 α 6
2 = 6k
k = 2/6
k = 1/3
Test:
y = 15
x = k * y
x = 1/3 * 15; x = 5
Prin urmare; (b) este proporțională
C.)
x = 2; y = 6
7 α 3,5
7 = 3,5k
k = 7 / 3,5
k = 2
Test:
y = 5
x = 2 * 3.5
x = 7
Prin urmare; (c) nu este proporțională
x = 0,5; y = 1
0,5 α 1
0,5 = k
Test:
y = 4
x = k * y
x = 0,5 * 4; x = 2
Prin urmare; (d) este proporțională
x = 0,2; y = 2
0,2 α 2
0,2 = 2k
k = 0,2 / 2
k = 0,1
Test:
y = 4,5
x = 0,1 * 4,5
x = 0,45
Prin urmare; (e) nu este proporțională
x = 1; y = 12
1 α 12
1 = 12k
k = 1/12
Test:
y = 84
x = 1/12 * 84
x = 7
Prin urmare; (f) este proporțională
Given that <span>Line m is parallel to line n.
We prove that 1 is supplementary to 3 as follows:
![\begin{tabular} {|c|c|} Statement&Reason\\[1ex] Line m is parallel to line n&Given\\ \angle1\cong\angle2&Corresponding angles\\ m\angle1=m\angle2&Deifinition of Congruent angles\\ \angle2\ and\ \angle3\ form\ a\ linear\ pair&Adjacent angles on a straight line\\ \angle2\ is\ supplementary\ to\ \angle3&Deifinition of linear pair\\ m\angle2+m\angle3=180^o&Deifinition of supplementary \angle s\\ m\angle1+m\angle3=180^o&Substitution Property \end{tabular}](https://tex.z-dn.net/?f=%5Cbegin%7Btabular%7D%0A%7B%7Cc%7Cc%7C%7D%0AStatement%26Reason%5C%5C%5B1ex%5D%0ALine%20m%20is%20parallel%20to%20line%20n%26Given%5C%5C%0A%5Cangle1%5Ccong%5Cangle2%26Corresponding%20angles%5C%5C%0Am%5Cangle1%3Dm%5Cangle2%26Deifinition%20of%20Congruent%20angles%5C%5C%0A%5Cangle2%5C%20and%5C%20%5Cangle3%5C%20form%5C%20a%5C%20linear%5C%20pair%26Adjacent%20angles%20on%20a%20straight%20line%5C%5C%0A%5Cangle2%5C%20is%5C%20supplementary%5C%20to%5C%20%5Cangle3%26Deifinition%20of%20linear%20pair%5C%5C%0Am%5Cangle2%2Bm%5Cangle3%3D180%5Eo%26Deifinition%20of%20supplementary%20%5Cangle%20s%5C%5C%0Am%5Cangle1%2Bm%5Cangle3%3D180%5Eo%26Substitution%20Property%0A%5Cend%7Btabular%7D)

</span>
namely, how many times does 3/4 go into 3½? Let's firstly convert the mixed fraction to improper fraction.
![\bf \stackrel{mixed}{3\frac{1}{2}}\implies \cfrac{3\cdot 2+1}{2}\implies \stackrel{improper}{\cfrac{7}{2}} \\\\[-0.35em] ~\dotfill\\\\ \cfrac{7}{2}\div \cfrac{3}{4}\implies \cfrac{7}{~~\begin{matrix} 2 \\[-0.7em]\cline{1-1}\\[-5pt]\end{matrix}~~}\cdot \cfrac{\stackrel{2}{~~\begin{matrix} 4 \\[-0.7em]\cline{1-1}\\[-5pt]\end{matrix}~~}}{3}\implies \cfrac{14}{3}\implies 4\frac{2}{3}](https://tex.z-dn.net/?f=%5Cbf%20%5Cstackrel%7Bmixed%7D%7B3%5Cfrac%7B1%7D%7B2%7D%7D%5Cimplies%20%5Ccfrac%7B3%5Ccdot%202%2B1%7D%7B2%7D%5Cimplies%20%5Cstackrel%7Bimproper%7D%7B%5Ccfrac%7B7%7D%7B2%7D%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Ccfrac%7B7%7D%7B2%7D%5Cdiv%20%5Ccfrac%7B3%7D%7B4%7D%5Cimplies%20%5Ccfrac%7B7%7D%7B~~%5Cbegin%7Bmatrix%7D%202%20%5C%5C%5B-0.7em%5D%5Ccline%7B1-1%7D%5C%5C%5B-5pt%5D%5Cend%7Bmatrix%7D~~%7D%5Ccdot%20%5Ccfrac%7B%5Cstackrel%7B2%7D%7B~~%5Cbegin%7Bmatrix%7D%204%20%5C%5C%5B-0.7em%5D%5Ccline%7B1-1%7D%5C%5C%5B-5pt%5D%5Cend%7Bmatrix%7D~~%7D%7D%7B3%7D%5Cimplies%20%5Ccfrac%7B14%7D%7B3%7D%5Cimplies%204%5Cfrac%7B2%7D%7B3%7D)
Answer:
I don't know but this question feels incomplete