Answer:
B: increase.
Explanation:
When we are considering two gases A and B in a container at room temperature .
We have to find the change on rate of reaction when the number of molecules of gases A is doubled
Let [A]=a and [B]=b
A+B
product
Rate of reaction
![R_1=k[A][B]=kab](https://tex.z-dn.net/?f=R_1%3Dk%5BA%5D%5BB%5D%3Dkab)
We know that concentration is increases with increase in number of moles
When the number of molecules of gases A is doubled then concentration of gases A increases.
Therefore ,[A]=2a
Rate of reaction


Hence, the rate of reaction is 2 times the initial rate of reaction.Therefore, the rate of reaction will increase when the number of molecules of gases A is doubled.
Answer: B: increase.
1. A thermodynamic quantity that is the difference between the internal energy of a system and the product of itsabsolute temperature and entropy; the capacity of a system to do work, as in an exothermic chemical reaction.<span>2. </span>A thermodynamic quantity that is the difference between the enthalpy and the product of the absolute temperatureand entropy of a system. Also called <span>Gibbs free energy</span>.
Caffeine has the following percent composition: carbon 49.48%, hydrogen 5.19%, oxygen 16.48% and nitrogen 28.85%. Its molecular weight is 194.19 g/mol.
Answer:
Abiotic
Explanation:
Its because it includes water, sunlight, tempature and soil
Answer:
The kinetic molecular theory of matter states that: Matter is made up of particles that are constantly moving. ... Molecules in the solid phase have the least amount of energy, while gas particles have the greatest amount of energy. The temperature of a substance is a measure of the average kinetic energy of the particles.
Explanation:
give me brainliest please