Answer:
pH of buffer =4.75
Explanation:
The pH of buffer solution is calculated using Henderson Hassalbalch's equation:
![pH=pKa+log[\frac{[salt]}{[acid]}](https://tex.z-dn.net/?f=pH%3DpKa%2Blog%5B%5Cfrac%7B%5Bsalt%5D%7D%7B%5Bacid%5D%7D)
Given:
pKa = 3.75
concentration of acid = concentration of formic acid = 1 M
concentration of salt = concentration of sodium formate = 10 M
![pH=3.75+log[\frac{10}{1}]=3.75+1=4.75](https://tex.z-dn.net/?f=pH%3D3.75%2Blog%5B%5Cfrac%7B10%7D%7B1%7D%5D%3D3.75%2B1%3D4.75)
pH of buffer =4.75
<span>To raise the liquid temperature to the point of boiling take 1231.776 joules of energy. To convert to a gas takes 5320.645 joules. To raise to 108 degrees Celsius takes 1456.848 joules. Total amount of energy needed (as heat) equals 8009.269 joules or 8.009 kj.</span>
The tree I know is producer
The scientist observes at what rate is the concentration increasing or decreasing.
Reacting to produce hydrogen gas is a chemical property