Answer:
The concentration of species in 500 mL of a 2.104 M solution of sodium sulfate is 4.208 M sodium ion and 2.104 M sulfate ion. (option E)
Explanation:
Step 1: Data given
Volume = 500 mL = 0.500 L
The concentration sodium sulfate = 2.104 M
Step 2: The equation
Na2SO4 → 2Na+ + SO4^2-
For 1 mol Na2SO4 we have 2 moles sodium ion (Na+) and 1 mol sulfate ion (SO4^2-)
Step 3: Calculate the concentration of the ions
[Na+] = 2*2.104 M = 4.208 M
[SO4^2-] = 1*2.104 M = 2.104 M
The concentration of species in 500 mL of a 2.104 M solution of sodium sulfate is 4.208 M sodium ion and 2.104 M sulfate ion. (option E)
Answer:
The number of moles of Sr in one mole of Sr(HCO₃)₂ = 1 mole
The number of moles of H in one mole of Sr(HCO₃)₂ = 2 moles
The number of moles of C in one mole of Sr(HCO₃)₂ = 2 moles
The number of moles of O in one mole of Sr(HCO₃)₂ = 6 moles
Explanation:
The given chemical formula of the compound is Sr(HCO₃)₂
The number of atoms of Sr in the compound = 1
The number of atoms of H in the compound = 2
The number of atoms of C in the compound = 2
The number of atoms of O in the compound = 6
The number of atoms of each element present in each formula unit of Sr(HCO₃)₂ is proportional to the number of moles of each atom in one mole of Sr(HCO₃)₂
Therefore;
The number of moles of Sr in one mole of Sr(HCO₃)₂ = 1 mole
The number of moles of H in one mole of Sr(HCO₃)₂ = 2 moles
The number of moles of C in one mole of Sr(HCO₃)₂ = 2 moles
The number of moles of O in one mole of Sr(HCO₃)₂ = 6 moles.
Answer:
Lost pigment of marker when dipped in alcohol
Explanation:
dependent viable = output
so it's the output of what happens after the input.
- she put the marker in the water which is the independent variable, that's the input
- the output or the result of that decision is having lost pigment in the marker