Molarity = moles of solute/volume of solution in liters.
From this relation, we can figure out the number of moles of solute by multiplying the molarity of the solution by the volume in liters.
We have 53.1 mL, or 0.0531 L, of a 12.5 M, or 12.5 mol/L, solution. Multiplying 12.5 mol/L by 0.0531 L, we obtain 0.664 moles. So, in this volume of solution, there are 0.664 moles of solute (HCl).
Hey there!:
8) ΔTb = i*Kb*m
m is molality
Since same number of mol is added to same amount of water in both cases
m will be same for both
is 1 for glucose since it is covalent compound
is 4 of Al(NO3)3 as it breaks into 1 Al₃⁺ and 3 NO₃⁻
So, ΔTb will be 4 times in aluminum nitrate case
So, boiling point will change by 4ºC
9) use Q = m* L
L = heat of vaporization so:
T1=T2=100ºC
5.40 * 1000 => 5400 cal/g
Q = 5400 / 540
Q = 10 grams
Hope that thlps!
Answer:
Atmospheric nitrogen is not heavier than chemical nitrogen, largely because “chemical nitrogen” is ultimately derived from atmospheric nitrogen. On the other hand, you could be asking why the atomic mass of nitrogen is not the same as the mass of nitrogen gas; that's because gaseous nitrogen is diatomic, .
Explanation:
This is from Google.
Hope this helps :))
Answer:
70.0 %
Explanation:
Step 1: Given data
- Mass of nitrogen (mN): 74.66 g
- Mass of the compound (mNxOy): 250 g
Step 2: Calculate the mass of oxygen (mO) in the compound
The mass of the compound is equal to the sum of the masses of the elements that form it.
mNxOy = mN + mO
mO = mNxOy - mN
mO = 250 g - 74.66 g = 175 g
Step 3: Determine the percent composition of oxygen in the sample
We will use the following expression.
%O = mO / mNxOy × 100%
%O = 175 g / 250 g × 100% = 70.0 %
The green one cause its staying in the same position even when time is passing. - hope this helped have a great day