Answer:
3 : 12
1 : 6
The final result is 1 : 6
The instantaneous rate of change of with respect to at the value is 18.
Step-by-step explanation:
a) Geometrically speaking, the average rate of change of with respect to over the interval by definition of secant line:
(1)
Where:
, - Lower and upper bounds of the interval.
, - Function exaluated at lower and upper bounds of the interval.
If we know that , and , then the average rate of change of with respect to over the interval is:
The average rate of change of with respect to over the interval is 27.
b) The instantaneous rate of change can be determined by the following definition:
(2)
- Change rate.
, - Function evaluated at and .
If we know that and , then the instantaneous rate of change of with respect to is:
i. Term = +
ii. Coefficient =
iii. Constant =
iv. Factor =
A trapezoid is a quadrilateral which has its base parallel to the opposite side. It's area can be determined by;
Area of trapezium = ( + )h
Where is the measure of length of its fist base, is the measure of its second base and h is its height.
Considering the given question,
Term = +
Coefficient =
Constant =
Factor =
9514 1404 393
∠K = ∠M = 55°
The two marked angles are opposite the sides marked as congruent. That means the angles are congruent, so we have ...
4x -1 = 2x +27
2x = 28 . . . . . . . . add 1-2x to both sides
x = 14
4x -1 = 4(14) -1 = 55
The measures of the angles are ...