Answer:
Here's what I got:
Let's assume that N and E are + directions while S and W are - directions.
Wind is blowing from SW; thus, it is blowing towards NE (or at 45 deg N of E).
Dividing the wind's speed into components:y-component: +70.71 km/h; x-component: +70.71 km/h
Dividing the airplane's speed into components:y-component: -600 km/h; x-component: 0 km/h
Adding the components to get the resulting components:y-component: -529.29 km/h; x-component: +70.71
Using the Pythagorean Theorem to find the resulting speed:v^2 = y^2 + x^2 so v = 533.99 km/h
To find the angle of direction, use arctan (y/x):arctan (529.29/70.71) = 82.39 deg
ANSWER: velocity = 533.99 km/h at 82.39 deg S of E
Explanation:
Answer:
I should be active for 15 hours to meet the physical activity requirement.
Explanation:
Since time dilates in moving objects, we use the formula t = t₀/√(1 - β²) where t = time in space vehicle, t₀ = time on earth = 9 hours and β = v/c where v = speed of space vehicle = 0.8c.
So, t = t₀/√(1 - β²)
t = 9/√(1 - (v/c)²)
= 9/√(1 - (0.8c/c)²)
= 9/√(1 - (0.8)²)
= 9/√(1 - (0.64)
= 9/√0.36
= 9/0.6
= 15 hr
So, according to a timer on the space vehicle, I should be active for 15 hours to meet the physical activity requirement.
Gravity adds 9.8 m/s to the speed of a falling object every second.
An object dropped from 'rest' (v = 0) reaches the speed of 78.4 m/s after falling for (78.4 / 9.8) = <em>8.0 seconds</em> .
<u>Note:</u>
In order to test this, you'd have to drop the object from a really high cell- tower, building, or helicopter. After falling for 8 seconds and reaching a speed of 78.4 m/s, it has fallen 313.6 meters (1,029 feet) straight down.
The flat roof of the Aon Center . . . the 3rd highest building in Chicago, where I used to work when it was the Amoco Corporation Building . . . is 1,076 feet above the street.
C would be the right answer edu
Answer:
33.6371 m
Explanation:
t = Time taken
u = Initial velocity = 20.3 m/s
v = Final velocity
s = Displacement
a = Acceleration = -7 m/s²
Distance traveled in the 0.207 seconds
Distance = Speed × Time
⇒Distance = 20.3×0.207 = 4.2021 m
Equation of motion

Distance traveled by the car while braking is 29.435 m
Total distance measured from the point where the driver first notices the red light is 29.435+4.2021 = 33.6371 m