1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Greeley [361]
3 years ago
5

How do physicists define velocity?

Physics
2 answers:
Natalija [7]3 years ago
7 0

Answer:

Velocity, quantity that designates how fast and in what direction a point is moving.

Explanation:

Elina [12.6K]3 years ago
6 0
Basically how fast and what direction it is pointing
You might be interested in
What change in entropy occurs when a 0.15 kg ice cube at -18 °C is transformed into steam at 120 °c 4.
Studentka2010 [4]

<u>Answer:</u> The change in entropy of the given process is 1324.8 J/K

<u>Explanation:</u>

The processes involved in the given problem are:

1.)H_2O(s)(-18^oC,255K)\rightarrow H_2O(s)(0^oC,273K)\\2.)H_2O(s)(0^oC,273K)\rightarrow H_2O(l)(0^oC,273K)\\3.)H_2O(l)(0^oC,273K)\rightarrow H_2O(l)(100^oC,373K)\\4.)H_2O(l)(100^oC,373K)\rightarrow H_2O(g)(100^oC,373K)\\5.)H_2O(g)(100^oC,373K)\rightarrow H_2O(g)(120^oC,393K)

Pressure is taken as constant.

To calculate the entropy change for same phase at different temperature, we use the equation:

\Delta S=m\times C_{p,m}\times \ln (\frac{T_2}{T_1})      .......(1)

where,

\Delta S = Entropy change

C_{p,m} = specific heat capacity of medium

m = mass of ice = 0.15 kg = 150 g    (Conversion factor: 1 kg = 1000 g)

T_2 = final temperature

T_1 = initial temperature

To calculate the entropy change for different phase at same temperature, we use the equation:

\Delta S=m\times \frac{\Delta H_{f,v}}{T}      .......(2)

where,

\Delta S = Entropy change

m = mass of ice

\Delta H_{f,v} = enthalpy of fusion of vaporization

T = temperature of the system

Calculating the entropy change for each process:

  • <u>For process 1:</u>

We are given:

m=150g\\C_{p,s}=2.06J/gK\\T_1=255K\\T_2=273K

Putting values in equation 1, we get:

\Delta S_1=150g\times 2.06J/g.K\times \ln(\frac{273K}{255K})\\\\\Delta S_1=21.1J/K

  • <u>For process 2:</u>

We are given:

m=150g\\\Delta H_{fusion}=334.16J/g\\T=273K

Putting values in equation 2, we get:

\Delta S_2=\frac{150g\times 334.16J/g}{273K}\\\\\Delta S_2=183.6J/K

  • <u>For process 3:</u>

We are given:

m=150g\\C_{p,l}=4.184J/gK\\T_1=273K\\T_2=373K

Putting values in equation 1, we get:

\Delta S_3=150g\times 4.184J/g.K\times \ln(\frac{373K}{273K})\\\\\Delta S_3=195.9J/K

  • <u>For process 4:</u>

We are given:

m=150g\\\Delta H_{vaporization}=2259J/g\\T=373K

Putting values in equation 2, we get:

\Delta S_2=\frac{150g\times 2259J/g}{373K}\\\\\Delta S_2=908.4J/K

  • <u>For process 5:</u>

We are given:

m=150g\\C_{p,g}=2.02J/gK\\T_1=373K\\T_2=393K

Putting values in equation 1, we get:

\Delta S_5=150g\times 2.02J/g.K\times \ln(\frac{393K}{373K})\\\\\Delta S_5=15.8J/K

Total entropy change for the process = \Delta S_1+\Delta S_2+\Delta S_3+\Delta S_4+\Delta S_5

Total entropy change for the process = [21.1+183.6+195.9+908.4+15.8]J/K=1324.8J/K

Hence, the change in entropy of the given process is 1324.8 J/K

4 0
3 years ago
Using newtons second law of motion, how fast for 100 KG object accelerates 350 N of force is applied to
fenix001 [56]

Answer:

3.5m/s^2

Explanation:

From Newton's second Law of Motion

F = ma

Where F is the applied force, m is the mass of the object and a is the acceleration.

F = 350 N

Mass = 100kg

350N = 100×a

a = 350/100

a = 3.5m/s^2

The acceleration of the object will be 3.5m/s^2

6 0
3 years ago
Objects in space that are moving at a constant velocity in a straight line ___________.
nikdorinn [45]
The best answer is A) <span>keep moving at a constant velocity until some forces act on them

As the man you're probably tired of hearing about said:

"Every object persists in its state of rest or in uniform motion in a straight line unless a new force acts upon it" 
This is Isaac Newton's 1st law of motion, or the law of inertia. 

Put more simply, objects in motion tend to stay in motion, and tend the maintain the same velocity (direction and speed) and objects at rest tend to stay at rest. </span>
6 0
3 years ago
Read 2 more answers
A gymnast of mass 63.0 kg hangs from a vertical rope attached to the ceiling. You can ignore the weight of the rope and assume t
Sergio [31]

Answer:

Explanation:

A ) When gymnast is motionless , he is in equilibrium

T = mg

= 63 x 9.81

= 618.03 N

B )

When gymnast climbs up at a constant rate , he is still in equilibrium ie net force acting on it is zero as acceleration is zero.

T = mg

= 618.03 N

C ) If the gymnast climbs up the rope with an upward acceleration of magnitude 0.600 m/s2

Net force on it = T - mg   , acting in upward direction

T - mg = m a

T =  mg + m a

= m ( g + a )

= 63 ( 9.81 + .6)

= 655.83 N

D )  If the gymnast slides down the rope with a downward acceleration of magnitude 0.600 m/s2

Net force acting in downward direction

mg - T = ma

T = m ( g - a )

= 63 x ( 9.81 - .6 )

= 580.23 N

6 0
3 years ago
What is the volume of a cone with a height of 27 cm
JulijaS [17]

Explanation:

→ Volume of cone = πr² × h/3

Here,

  • Radius (r) = 13 cm
  • Height (h) = 27 cm

→ Volume of cone = π(13)² × 27/3 cm³

→ Volume of cone = 169π × 9 cm³

→ Volume of cone = 1521π cm³

→ Volume of cone = 1521 × 22/7 cm³

→ Volume of cone = 33462/7 cm³

→ <u>Volume of cone = 4780.28 cm³</u>

4 0
3 years ago
Other questions:
  • A vertical spring with spring constant 23.15 N/m is hanging from a ceiling. A small object is attached to the lower end of the s
    11·1 answer
  • What is the definition of density?​
    8·1 answer
  • 1. A baseball is thrown vertically at 16.7 m/s. What is the maimum height of the baseball?
    12·1 answer
  • A 163 ‑turn circular coil of radius 2.65 cm and negligible resistance is immersed in a uniform magnetic field that is perpendicu
    5·1 answer
  • What is the label for coefficient of friction
    5·1 answer
  • A man (weighing 763 N) stands on a long railroad flatcar (weighing 3513 N) as it rolls at 19.8 m/s in the positive direction of
    11·1 answer
  • How the materials between a capacitors’ plates can change its capacitance
    14·1 answer
  • . Determine if approximate cylindrical symmetry holds for the following situations. State why or why not. (a) A 300-cm long copp
    6·1 answer
  • A long distance runner running a 5.0km track is pacing himself by running 4.5km at 9.0km/h and the rest at 12.5km/h. What is his
    5·1 answer
  • 1. Find the resultant due to the action of three forces if they are F1, 100 N, 60º above the x axis; F2, 200 N, 140º above the x
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!