1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
omeli [17]
3 years ago
15

Consider a vortex filament of strength Γ in the shape of a closed circular loop of radius R. Consider also a straight line throu

gh the center of the loop, perpendicular to the plane of the loop. Let A be the distance along the line, measured from the plane of the loop. Obtain an expression for the velocity at distance A on the line, as induced by the vortex filament.
Physics
1 answer:
Sedbober [7]3 years ago
6 0

Answer:

\vec{V} = \frac{\Gamma}{2R}\vec{A}

Explanation:

We define our values according to the text,

R= Radius

\vec{V} =Velocity

\Gamma =Strenght of the vortex filament

From this and in a vectorial way we express an elemental lenght of this filmaent as \vec{dl}. So,

\vec{dl}x\vec{r} = R*dl*\vec{A}

Where \vec{A} imply a vector acting perpendicular to both vectors.

Applying Biot-Savart law, we have,

\vec{V} =\frac{\Gamma}{4\pi}\int\frac{\vec{dl}x\vec{r}}{r^3}

Substituting the preoviusly equation obtained,

\vec{V} = \frac{\Gamma}{4\pi}\int\frac{R*dl*\vec{A}}{R^3}

\vec{V} = \frac{\Gamma}{4\pi R^2}\int^{2\pi R}_0 dl*\vec{A}

\vec{V} = \frac{\Gamma(2\pi R \vec{A})}{4\pi R^2}

So we can express the velocity induced is,

\vec{V} = \frac{\Gamma}{2R}\vec{A}

You might be interested in
How can you make the potential energy as high as possible in a magnetic field between one electromagnet and one piece of iron?
harkovskaia [24]

In step 1, to increase the potential energy, the iron will move towards the electromagnet.

In step 2, to increase the potential energy, the iron will move towards the electromagnet.

<h3>Potential energy of a system of magnetic dipole</h3>

The potential energy of a system of dipole depends on the orientation of the dipole in the magnetic field.

U = \mu B

where;

  • \mu is the dipole moment
  • B is the magnetic field

B = \frac{\mu_0 I}{2\pi r}

U = \mu\times  (\frac{\mu_0 I}{2\pi r} )

Increase in the distance (r) reduces the potential energy. Thus, we can conclude the following;

  • In step 1, to increase the potential energy, the iron will move towards the electromagnet.
  • In step 2, when the iron is rotated 180, it will still maintain the original position, to increase the potential energy, the iron will move towards the electromagnet.

Learn more about potential energy in magnetic field here: brainly.com/question/14383738

7 0
2 years ago
Why is it not necessary for radio telescope surfaces to be as smooth as a mirror?
Law Incorporation [45]
It doesn't on account of radio waves are longer than optical waves. Radio waves are a sort of electromagnetic radiation with wavelengths in the electromagnetic range longer than infrared light. These long waves are in the radio locale of the electromagnetic range.
8 0
3 years ago
You are standing 2.5m directly in front of one of the two loudspeakers. They are 3.0m apart and both are playing a 686Hz tone in
ahrayia [7]

Answer:

distance from speaker is 17.87 m

Explanation:

given data

distance from loudspeaker = 2.5 m

distance between loudspeaker = 3.0 m

room temperature = 20c

wavelength f  = 686Hz

to find out

what distances from the speaker

solution

we know sound velocity c = 331.5  + 0.6 × 20c = 343.5

so wavelength of sound  λ = c / f  

wavelength = 343.5 /  686 = 0.5 m

when the difference in distance of speaker destructive interference will be

d = λ/2 × (2n-1)

for n = 1, 2 3 4 ..

d = 0.5/2 × (2n-1)

d = 0.250 , 0.75 , 1.25 , 1.750............   for n = 1, 2 3 .............

so

for d = 0.250

side of triangle by hypotenuse of triangle are

\sqrt{3^{2}+(2..5+x)^{2} } - (2.5 + x1) = 0.250

0.5 x1 = 7.6875

x1 = 15.375 m

for d = 0.75

side of triangle by hypotenuse of triangle are

\sqrt{3^{2}+(2..5+x)^{2} } - (2.5 + x2) = 0.75

1.5 x2 = 4.6875

x2 = 3.125 m

for d = 1.250

side of triangle by hypotenuse of triangle are

\sqrt{3^{2}+(2..5+x)^{2} } - (2.5 + x3) = 1.250

2.5 x2 = 1.1875

x3 = 0.475 m

for d = 1.750

x4 will be negative so we stop here

so the distance from speaker here is given below

distance = 2.5 + x

here x = 0.475 , 3.125 and 15.375 so

distance 1 = 2.5 + 0.475  = 2.975 m

distance 2 = 2.5 + 3.125  = 5.625 m

distance 3 = 2.5 + 15.375 = 17.875 m

final distance from speaker is 17.87 m

8 0
3 years ago
Which is a characteristic of all waves?
juin [17]

Answer:à

Explanation:waves carry energy in the direction in which they move

7 0
3 years ago
Read 2 more answers
PLZ SOMEONEE HELPP I’LL MARK BRANLIESTTTT
7nadin3 [17]

Answer:

I'm pretty sure it's 37.5 joules of energy

Explanation:

hope this helps!

8 0
3 years ago
Other questions:
  • What kinds of space and matter can light travel through
    5·2 answers
  • A cold glass of iced tea warms quickly on a hot day through the process of A. conversion. B. insulation. C. conduction. D. expan
    10·2 answers
  • Which is an important step in how an electric motor uses magnetic force to produce motion?
    15·2 answers
  • What is machine. what is mechanica advantage​
    5·2 answers
  • two-point charges are 10.0 cm apart and have charges of 2.0 uc and -2.0uc respectively What is the magnitude of the electrical f
    15·1 answer
  • All motion will eventually stop due to the "loss" of energy to___.
    14·2 answers
  • What is the density of an object with a mass of 50 grams and a volume of 4 cm3
    7·2 answers
  • Which phenomenon occurs when one wave is superimposed on another ?
    5·2 answers
  • Which refers to the ratio of output work to input work of a machine expressed as a percent?
    15·2 answers
  • A child rides a carousel with a radius of5.1 that rotates with a constant speed of2.2 m/s. Calculate the magnitude of the centri
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!