Answer:
The rate at which the container is losing water is 0.0006418 g/s.
Explanation:
- Under the assumption that the can is a closed system, the conservation law applied to the system would be:
, where
is all energy entering the system,
is the total energy leaving the system and,
is the change of energy of the system. - As the purpose is to kept the beverage can at constant temperature, the change of energy (
) would be 0. - The energy that goes into the system, is the heat transfer by radiation from the environment to the top and side surfaces of the can. This kind of transfer is described by:
where
is the emissivity of the surface,
known as the Stefan–Boltzmann constant,
is the total area of the exposed surface,
is the temperature of the surface in Kelvin,
is the environment temperature in Kelvin. - For the can the surface area would be ta sum of the top and the sides. The area of the top would be
, the area of the sides would be
. Then the total area would be 
- Then the radiation heat transferred to the can would be
. - The can would lost heat evaporating water, in this case would be
, where
is the rate of mass of water evaporated and,
is the heat of vaporization of the water (
). - Then in the conservation balance:
, it would be
. - Recall that
, then solving for
:
Answer:
Distance = 13.9 meters
Explanation:
Given the following data;
Maximum speed = 150 km/hr to meters per seconds = 150 * 1000/3600 = 41.67 m/s
Decelerating speed = 3m/s
To find the distance travelled with this speed;
Distance = maximum speed/decelerating speed
Distance = 41.67/3
Distance = 13.9 meters
Therefore, the bus would travel a distance of 13.9 meters before stopping.
Answer:
(a) 
(b) 5220 j
(c) 1740 watt
(d) 3446.66 watt
Explanation:
We have given mass m = 290 kg
Initial velocity u = 0 m/sec
Final velocity v = 6 m/sec
Time t = 3 sec
From first equation of motion
v = u+at
So 
(a) We know that force is given by
F = ma
So force will be 
(b) From second equation of motion we know that

We know that work done is given by
W = F s = 580×9 =5220 j
(c) Time is given as t = 3 sec
We know that power is given as

(d) Time t = 1.5 sec
So 
Answer:
Momentum of system = 37.2 Kgm/s.
Explanation:
<u>Given the following data;</u>
- Mass A = 5 kg
- Velocity A = 6 m/s
- Mass B = 12 kg
- Velocity B = 0.6 m/s
To find the momentum of the system;
Momentum can be defined as the multiplication (product) of the mass possessed by an object and its velocity. Momentum is considered to be a vector quantity because it has both magnitude and direction.
Mathematically, momentum is given by the formula;
Momentum = mass * velocity
<u>For object A;</u>
Momentum A = 5 * 6
Momentum A = 30 Kgm/s
<u>For object B;</u>
Momentum B = 12 * 0.6
Momentum B = 7.2 Kgm/s
Next, we would determine the momentum of this system using the formula;
Momentum of system = Momentum A + Momentum B
Substituting the values into the formula, we have;
Momentum of system = 30 + 7.2
<em>Momentum of system = 37.2 Kgm/s.</em>
The correct answer would be Electron Cloud