Answer:
![[F]=[MLT^{-2}]](https://tex.z-dn.net/?f=%5BF%5D%3D%5BMLT%5E%7B-2%7D%5D)
Explanation:
Newton’s second law states that the acceleration a of an object is proportional to the force F acting on it is inversely proportional to its mass m. The mathematical expression for the second law of motion is given by :
F = m × a
F is the applied force
m is the mass of the object
a is the acceleration due to gravity
We need to find the dimensions of force. The dimension of force m and a are as follows :
![[m]=[M]](https://tex.z-dn.net/?f=%5Bm%5D%3D%5BM%5D)
![[a]=[LT^{-2}]](https://tex.z-dn.net/?f=%5Ba%5D%3D%5BLT%5E%7B-2%7D%5D)
So, the dimension of force F is,
. Hence, this is the required solution.
The miracle year for Albert Einstein was the year 1905 within which he published so many renowned papers.
<h3>When was Einstein miracle year?</h3>
The miracle year for Albert Einstein was the year 1905 within which he published so many renowned papers in a short time and became very popular.
His mindset in that year was one that challenged the orthodox explanations and sought to think outside the box.
Learn more about Albert Einstein:brainly.com/question/2964376
#SPJ1
The correct graph is <u>D</u>.
The graph <em>A</em> is a straight line sloping downwards and it shows that the speed of the body is decreasing at a constant rate. Therefore, this s a graph of a body that is under a constant deceleration.
The graph B is a straight line which slopes upwards. Hence the graph shows that the speed of the body increases at a constant rate. Therefore, this is a graph of a body that is accelerating at a constant rate.
The graph C is curved line, which curves upwards. The slope of the curve increases with time. This is therefore, a graph of a body which is under increasing acceleration.
The graph D, however is a straight line parallel to the time axis. The speed of the body has the same value at all times. Therefore, Graph D is the graph which shows the motion of a body with constant speed.
Advances in technology used to study and observe atoms lead to the discovery of electrons, protons, nuetrons, and the quarq