Answer:
1.) h = 164.8 m
2.) U = 49.1 m/s
3.) t = 1.43 seconds
Explanation:
1.) A soccer ball is dropped from the top of a building. It takes 5.8 seconds to fall to the ground. The height of the building is...?
Since the soccer ball is dropped from the building, the initial velocity U will be equal to zero
Using second equation of motion
h = Ut + 1/2gt^2
Substitutes the time into the formula
h = 1/2 × 9.8 × 5.8^2
h = 164.8 m
2. The Falcon 9 launches to a height of 123 meters. What is its vertical initial velocity?
At maximum height final velocity = 0
Using the third law of motion
V^2 = U^2 - 2gH
0 = U^2 - 2 × 9.8 × 123
U^2 = 2410.8
U = 49.1 m/s
3. An apple falls from rest off a 10.m m tree. How long will it take before it hits the ground?
Since the apple fall from rest, the initial velocity U will be equal to zero
Using the second equation of motion,
h = Ut + 1/2gt^2
substitute all the parameters into the formula
10 = 1/2 × 9.8 × t^2
10 = 4.9t^2
t^2 = 10/4.9
t^2 = 2.04
t = 1.43 seconds
Answer
given,
force per unit length = 350 µN/m
current, I = 22.5 A
y = y = 0.420 m



I₂ = 32.67 A
distance where the magnetic field is zero


there the distance at which the magnetic field is zero in the two wire is at 0.248 m.
It depends, You have to have the length and the width of the crest wave.
Answer:

we can see that this time period is independent of the mass of the child so answer would be same if the child mass is different
Explanation:
Natural frequency of a simple pendulum of L length is given as

so the time period of the oscillation is given as

so we will have



also from above formula we can see that this time period is independent of the mass of the child so answer would be same if the child mass is different
I think the answer is 3 miles because its storming now where I live