Answer:
21.53 x 10^{6} N
Explanation:
force (F) = 4.71 x 10^{3} N
distance (s) = 4.57 km = 4570 m
how much work is done.
work = force x distance
work = 4.71 x 10^{3} x 4570 = 21.53 x 10^{6} N
Answer:
Therefore the speed of q₂ is 1961.19 m/s when it is 0.200 m from from q₁.
Explanation:
Energy conservation law: In isolated system the amount of total energy remains constant.
The types of energy are
- Kinetic energy.
- Potential energy.
Kinetic energy 
Potential energy =
Here, q₁= +5.00×10⁻⁴C
q₂=-3.00×10⁻⁴C
d= distance = 4.00 m
V = velocity = 800 m/s
Total energy(E) =Kinetic energy+Potential energy
+ 

=(1280-337.5)J
=942.5 J
Total energy of a system remains constant.
Therefore,
E
+ 




m/s
Therefore the speed of q₂ is 1961.19 m/s when it is 0.200 m from from q₁.
Answer:
3) D: 31 m/s
4) D: 84.84 metres
Explanation:
3) Initial velocity along the x-axis is;
v_x = v_o•cos θ
Initial velocity along the y-axis is;
v_y = v_o•sin θ
Plugging in the relevant values, we have;
v_x = 31 cos 60
v_x = 31 × 0.5
v_x = 15.5 m/s
Similarly,
v_y = 31 sin 60
v_y = 31 × 0.8660
v_y = 26.85 m/s
Thus, magnitude of the initial velocity is;
v = √(15.5² + 26.85²)
v ≈ 31 m/s
4) Formula for horizontal range is;
R = (v² sin 2θ)/g
R = (31² × sin (2 × 60))/9.81
R = 84.84 m
Answer:
56 kg
Explanation:
The change in potential energy of the man is given by:

where
m is the man's mass
g is the gravitational acceleration
is the change in height of the man
In this problem, we have:
is the gain in potential energy
g = 9.8 m/s^2 is the gravitational acceleration
is the change in height
Re-arranging the equation and substituting the numbers, we find the mass:

A) 300cm/h
B)1 hr=60 min
300/60=5
5cm/min
C)1m=100cm
300/100=3
3m/h