Answer:
585×10⁸ m
Explanation:
Distance = rate × time
d = (2.998×10⁸ m/s) (3.25 min) (60 s/min)
d = 585×10⁸ m
Assuming an ideal gas, the speed of sound depends on temperature
only. Air is almost an ideal gas.
Assuming the temperature of 25°C in a "standard atmosphere", the
density of air is 1.1644 kg/m3, and the speed of sound is 346.13 m/s.
The velocity can't be specified, since the question gives no information
regarding the direction of the sound.
<h2>
Answer: 277.777 m</h2>
Explanation:
The situation described here is parabolic movement. However, as we are told that the rock was<u> projected upward from the surface</u>, we will only use the equations related to the Y axis.
In this sense, the movement equations in the Y axis are:
(1)
(2)
Where:
is the rock's final position
is the rock's initial position
is the rock's initial velocity
is the final velocity
is the time the parabolic movement lasts
is the acceleration due to gravity at the surface of the moon
As we know
, equation (2) is rewritten as:
(3)
On the other hand, the maximum height is accomplished when
:
(4)
(5)
Finding
:
(6)
Substituting (6) in (3):
(7)
(8) Now we can calculate the maximum height of the rock
(9)
Finally:
Answer:
a) D_ total = 18.54 m, b) v = 6.55 m / s
Explanation:
In this exercise we must find the displacement of the player.
a) Let's start with the initial displacement, d = 8 m at a 45º angle, use trigonometry to find the components
sin 45 = y₁ / d
cos 45 = x₁ / d
y₁ = d sin 45
x₁ = d sin 45
y₁ = 8 sin 45 = 5,657 m
x₁ = 8 cos 45 = 5,657 m
The second offset is d₂ = 12m at 90 of the 50 yard
y₂ = 12 m
x₂ = 0
total displacement
y_total = y₁ + y₂
y_total = 5,657 + 12
y_total = 17,657 m
x_total = x₁ + x₂
x_total = 5,657 + 0
x_total = 5,657 m
D_total = 17.657 i^+ 5.657 j^ m
D_total = Ra (17.657 2 + 5.657 2)
D_ total = 18.54 m
b) the average speed is requested, which is the offset carried out in the time used
v = Δx /Δt
the distance traveled using the pythagorean theorem is
r = √ (d1² + d2²)
r = √ (8² + 12²)
r = 14.42 m
The time used for this shredding is
t = t1 + t2
t = 1 + 1.2
t = 2.2 s
let's calculate the average speed
v = 14.42 / 2.2
v = 6.55 m / s
The forces acting on your mom while cooking is Air resistance and the force of friction
<u>Explanation:</u>
<u>1. Air resistance:</u>
- In simple words, Air resistance can be stated as the type of friction between the air and the other materials.
- In this scenario, there will be an air resistance and the air hits the mom while cooking via the doors or windows
<u>2. The force of friction:</u>
- In simple words, friction can be stated as, the resistance that one surface or object encounters when moving over another.
- While cooking the food mom would experience the friction since friction is the transfer of heat, and cooking is the process of receiving that heat.