Answer:
2.16×10⁻⁶ N
Explanation:
Applying,
F = kqq'/r² (coulomb's Law)....................... Equation 1
Where F = electrostatic force, k = coulomb's constant, q = charge on the styrofoam, q' = charge on the grain of salt, r = distance between the charges.
From the question,
Given: q = 0.002 mC = 2.0×10⁻⁶ C, q' = 0.03 nC = 3.0×10⁻¹¹ C, r = 0.5 m
Constant: k = 8.99×10⁹ Nm²/C²
Substitute these values into equation 1
F = (2.0×10⁻⁶)(3.0×10⁻¹¹)(8.99×10⁹)/0.5²
F = 2.16×10⁻⁶ N
When you attract every object in the universe with a force that is proportional to the mass of the objects and to the distance between them, we are obeying Newton's law of universal gravitation.
<h3>Newton's law of universal gravitation</h3>
Newton's law of universal gravitation states that the force of attraction between two masses in the universe is directly proportional to the product of the masses and inversely proportional to the the square of the distance between them.
The mathematical interpretation of the above law is
Removing the proportionality sign,
Where:
- F = Force of attraction
- G = Gravitational constant
- M = Bigger mass
- m = Smaller mass
- r = Distance between the masses.
From the above, When you attract every object in the universe with a force that is proportional to the mass of the objects and to the distance between them, we are obeying Newton's law of universal gravitation.
Learn more about Newton's law of universal gravitation here: brainly.com/question/9373839
#SPJ12
There are two ways to solve this. The longer way is to use those equations to calculate numbers for total distance.
The easier way is to find the area under the graph. That's right, AREA UNDER VELOCITY-TIME graph is the TOTAL DISTANCE travelled!
it's a shortcut.
Let's split up the area into a triangle and rectangle:
Triangle = 0.5(4-0)(10-0) = 20 m
Rectangle = (6-4)(10-0) = 20 m
Total distance = 40 m!
Answer:
20 watts
Explanation:
Big brain mode activated:
Power=1200J/60sec
Power=20 watts
Answer:
gets higher
Explanation:
There are videos that show the range of human hearing. If you would play the video, you would notice that if the frequency increases, the pitch would also increase.