The magnitudes of his q and ∆H for the copper trial would be lower than the aluminum trial.
The given parameters;
- <em>initial temperature of metals, = </em>
<em /> - <em>initial temperature of water, = </em>
<em> </em> - <em>specific heat capacity of copper, </em>
<em> = 0.385 J/g.K</em> - <em>specific heat capacity of aluminum, </em>
= 0.9 J/g.K - <em>both metals have equal mass = m</em>
The quantity of heat transferred by each metal is calculated as follows;
Q = mcΔt
<em>For</em><em> copper metal</em><em>, the quantity of heat transferred is calculated as</em>;

<em>The </em><em>change</em><em> in </em><em>heat </em><em>energy for </em><em>copper metal</em>;

<em>For </em><em>aluminum metal</em><em>, the quantity of heat transferred is calculated as</em>;

<em>The </em><em>change</em><em> in </em><em>heat </em><em>energy for </em><em>aluminum metal </em><em>;</em>

Thus, we can conclude that the magnitudes of his q and ∆H for the copper trial would be lower than the aluminum trial.
Learn more here:brainly.com/question/15345295
Answer:
The eight Moon phases:
Waxing Crescent: In the Northern Hemisphere, we see the waxing crescent phase as a thin crescent of light on the right. First Quarter: We see the first quarter phase as a half moon. Waxing Gibbous: The waxing gibbous phase is between a half moon and full moon.
The phases of the Moon are the different ways the Moon looks from Earth over about a month. As the Moon orbits around the Earth, the half of the Moon that faces the Sun will be lit up. The different shapes of the lit portion of the Moon that can be seen from Earth are known as phases of the Moon.
<h2>The 8 phases (in order) are:</h2>
- New moon.
- Waxing Crescent.
- First Quarter.
- Waxing Gibbous.
- Full moon.
- Waning Gibbous.
- Third Quarter.
- Waning Crescent.
Explanation:
Hope it is helpful....
If you know the distance and the time I travelled that distance.
You just have to divide the time from the distance to get velocity
V =d
_
t