Answer:
The general equation for conservation of momentum during a collision between n number of objects is given as: [m i ×v i a ] = [m i ×v i b ] Where m i is the mass of object i , v i a is the velocity of object i before the collision, and v i b is the velocity of object i after the collision.
Explanation:
Answer:
v₂ = 306.12 m/s
Explanation:
We know that the volume flow rate of the water or any in-compressible liquid remains constant throughout motion. Therefore, from continuity equation, we know that:
A₁v₁ = A₂v₂
where,
A₁ = Area of entrance pipe = πd₁²/4 = π(0.016 m)²/4 = 0.0002 m²
v₁ = entrance velocity = 3 m/s
A₂ = Area of nozzle = πd₂²/4 = π(0.005 m)²/4 = 0.0000196 m²
v₂ = exit velocity = ?
Therefore,
(0.0002 m²)(3 m/s) = (0.0000196 m²)v₂
v₂ = (0.006 m³/s)/(0.0000196 m²)
<u>v₂ = 306.12 m/s</u>
Answer:
D
Explanation:
speed = frequency x wavelength
speed of light in vacuum is 3.0 x 10^8
wavelength = 5.32 x10 ^-7
3.0 x 10 ^ 8 = 5.32 x 10^-7 x frequency
frequency = 5.63909 x 10^14
round it off = 5.64 x 10^14 Hz
thus the answer is D
hope this helps please mark it
Answer:
x = 2000 Km
Explanation:
Given
y = 10 km
Slope: 1 : 200
x = ?
We can apply the formula
y / x = 1 / 200 ⇒ x = 200*y = 200*10 Km
⇒ x = 2000 Km