Answer:
Explanation:
Given
mass of box 
coefficient of kinetic friction 
coefficient of Static friction 
cart is moving with constant velocity therefore Net Force is zero
Since there is no net acceleration therefore friction force will be zero
mathematically

where 



Answer:
Earth pulls the sun towards itself with a force equal to the ratio of the mass of the sun to the mass of Earth
Answer:
Explanation:
Unbalanced Force according to newton's second law is the one which causes the object to move or break its state of rest on application of force.
Here the object accelerate to a speed of 4 m/s and moves a distance of 5 m on application of force .
Thus we can say that the applied force is unbalanced in nature.
Answer:
The acceleration of Abbie is half of the Zak's.
Explanation:
The centripetal acceleration of an object on a circular path is given by :

Two children are riding on a merry-go-round that is rotating with a constant angular speed. Let
is distance of Abbie from the merry-go-round and
is distance of Zak's from the merry-go-round. Acceleration of Abbie is :
...... (1)

Acceleration of Zak's is :
.......(2)

Dividing equation (1) and (2) we get :

So, the acceleration of Abbie is half of the Zak's.
Answer:
Part a)
a = -9.81 m/s/s
Part b)
v = 0
Part c)
v = 9.81 m/s
Part d)

Explanation:
Part a)
During the motion of ball it will have only gravitational force on the ball
so here the acceleration of the ball is only due to gravity
so it is given as

Part b)
As we know that ball is moving against the gravity
so here the velocity of ball will keep on decreasing as the ball moves upwards
so at the highest point of the motion of the ball the speed of ball reduce to zero

Part c)
We know that the total time taken by the ball to come back to the initial position is T = 2 s
so in this time displacement of the ball will be zero



Part d)
at the maximum height position we know that the final speed will be zero
so we will have

here we have

