Answer: A,C,D,E are correct statements of an inductor
A. When an inductor and a resistor are connected in series with a DC battery, the current in the circuit is reduced to zero in one time constant.
C. An inductor always resists any change in the current through it.
D. When it is connected in a circuit, an inductor always resists having current flow through it.
E. Inductors store energy by building up charge.
Answer:
He has a speed of 16.60m/s after 35.0 meters.
Explanation:
The final velocity can be determined by means of the equations for a Uniformly Accelerated Rectilinear Motion:
(1)
The acceleration can be found by means of Newton's second law:
Where
is the net force, m is the mass and a is the acceleration.
(2)
All the forces can be easily represented in a free body diagram, as it is shown below.
Forces in the x axis:
(3)
Forces in the y axis:
(4)
Solving for the forces in the x axis:

Where
and
:


Replacing in equation (2) it is gotten:






So the acceleration for the cyclist is
, now that the acceleration is known, equation (1) can be used:

However, since he was originally at rest its initial velocity will be zero (
).



He has a speed of 16.60m/s after 35.0 meters
Answer:
0.14 seconds
Explanation:
The speed of light in vacuum is approximately 3.0*10^8. The distance that would be covered by the object would be equivalent to the circumference of the cross-section of the earth on the equator.
Circumference = 2
*6400000 =4.02*10^7
Time = distance/speed = 4.2*10^7 / 3.0*10^8 =0.14s
I think that number five is lithium
D=rt
when biker A catches biker B, the time they've been riding is the same, so
t=t, or d/r=d/r
the rates are 6.4 and 4.7, so
d/6.4=d/4.7
biker B is 34m ahead, so
(d+34)/6.4=d/4.7
multiply both sides by 6.4*4.7:
4.7(d+34)=6.4d
4.7d+=6.4d+159.8
1.7d=159.8
d=94 meters
Another way to think of it is that biker A gains 1.7 meters on B every second (6.4-4.7=1.5), so the time it'll take for him to gain 34 meters is 34/1.7=20 seconds. In that time, biker B travels 4.7*20=94 meters