Answer:
1225 J
Explanation:
The Gravitational potential energy (PEG) gained by a mass lifted above the ground is given by

where
m is the mass
g = 9.8 m/s^2 is the acceleration due to gravity
h is the height at which the object has been lifted
In this problem, we have
m = 250 kg
h = 0.5 m
So, the PE of the object is

Answer:
which corresponds to the second option shown: "voltage times amperage"
Explanation:
The electric power is the work done to move a charge Q across a given difference of potential V per unit of time.
Since such electrical work is the product of the potential difference V times the charge that moves through that potential, and this work is to be calculated by the unit of time, we need to divide the product by time (t) which leads to the following final simple equation:

Notice that we replaced the quotient representing charge per unit of time (Q/t) by the actual current running through the circuit.
This corresponds to the second option shown in the question: "Voltage times amperage".
Explanation:
the Moon passes between Earth and the Sun Even though the Moon is much smaller than the Sun, because it is just the right distance away from Earth, the Moon can fully block the Sun's light from Earth's perspective This completely blocks out the Sun's light
Answer:
130.22 g
Explanation:
Parameters given:
Mass of water Mw = 225 g
Mass of stirrer Ms = 40 g
Mass of silver M(S) = 410 g
By applying the law of conservation of energy:
(McCc + MsCs + MwCw)ΔTw = M(S)C(S)ΔT(S)
where Mc = Mass of cup
Cc = Specific heat capacity of aluminium cup = 900 J/gC
Cs = Specific heat capacity of copper stirrer = 387 J/gC
Cw = Specific heat capacity of water = 4186 J/gC
ΔTw = change in temperature of water = 32 - 27 = 5 °C
C(S) = Specific heat capacity of silver = 234 J/gC
ΔT(S) = change in temperature of silver = 88 - 32 = 56 °C
Therefore:
[(Mc * 900) + (40 * 387) + (225 * 4186)] * 5 = 410 * 234 * 56
(900Mc + 957330) * 5 = 5276700
900Mc + 957330 = 5276700 / 5 = 1074528
900Mc = 1074528 - 957330
900Mc = 117198
Mc = 117198/ 900
Mc = 130.22 g
The mass of the cup is 130.22 g.