It confirmed medeleeve's hypothesis (prediction) and showed the use of his table
Answer:
2156 J
Explanation:
From the question,
Work done = Combined mass of the bucket and water×height×gravity.
W = (M+m)hg............................. Equation 1
Where M = mass of water, m = mass of the bucket, h = height, g = acceleration due to gravity.
Given: M = 20 kg, m = 2 kg, h = 10 m
Constant: g = 9.8 m/s²
Substitute these value into equation 1
W = (20+2)×10×9.8
W = 22×98
W = 2156 J
Answer:
Not possible
Explanation:
Unless there's some extra external force to keep both particles at rest after the collision, the momentum must be conserved before and after the collision.
So before the collision, 1 particle is at rest, 1 not -> total momentum is non-zero
After the collision, both particles are at rest -> total momentum is zero which is different from before.
Therefore this is not possible.
<span>procedure would most likely help determine a chemical property of the substance is : exposing it to a flame to see if it catches on fire
Chemical property is the characteristic that a substance has that differntiate it with another substance. The most common charatcteristics that most scientists wanted to know are :
- It's flamability
- It's radioactivity
- Its toxicity
By throwing the object into fire, we will easily find out these 3 characteristics</span>
Answer:
The electronic transition of an electron back to a lower energy level generates an emission spectrum.
Explanation:
The atomic emission spectrum¹ of an element has its origin when an electronic transition² occurs. An electron in an atom or ion³will absorb energy coming from a source and pass to a higher energy level, the electron, upon returning to its base state will emit a photon⁴ or a series of photons.
Hence, that leads to the formation of an emission spectrum.
Remember that an electron has energy levels in an atom or ion, at which each energy level has a specific value.
The energy values will differ from one element to another. So, it can be concluded that each element has a unique pattern of emission lines.
Key terms:
¹Spectrum: Decomposition of light in its characteristic colors.
²Electronic transition: When an electron passes from one energy level to another, either for the emission or absorption of a photon.
³Ion: An atom electrically charged due to the gain or loss of electrons.
⁴Photon: Elementary particle that constitutes light.