Answer:
it can occur in all waves because all wave have a frequency
The complete queston is The amount of a radioactive element A at time t is given by the formula
A(t) = A₀e^kt
Answer: A(t) =N e^( -1.2 X 10^-4t)
Explanation:
Given
Half life = 5730 years.
A(t) =A₀e ^kt
such that
A₀/ 2 =A₀e ^kt
Dividing both sides by A₀
1/2 = e ^kt
1/2 = e ^k(5730)
1/2 = e^5730K
In 1/2 = 5730K
k = 1n1/2 / 5730
k = 1n0.5 / 5730
K= -0.00012 = 1.2 X 10^-4
So that expressing N in terms of t, we have
A(t) =A₀e ^kt
A₀ = N
A(t) =N e^ -1.2 X 10^-4t
Answer:
Quick question do you mean what are some safety rules
Explanation:
Crosswalk, Stop sign,
The force exerted on the board by the karate master given the data is -4500 N
<h3>Data obtained from the question </h3>
- Initial velocity (u) = 10 m/s
- Final velocity (v) = 1 m/s
- Time (t) = 0.002 s
- Mass (m) = 1 Kg
- Force (F) = ?
<h3>How to determine the force</h3>
The force exerted can be obtained as illustrated below:
F = m(v - u) / t
F = 1 (1 - 10) / 0.002
F = (1 × -9) / 0.002
F = -4500 N
Learn more about momentum:
brainly.com/question/250648
#SPJ1
The formula for force exerted on/by a spring is
F = k*e where k is the spring constant and x is the distance stretched from
unstrained position. This should allow you to find what you need.
Using F = k x e,
where k is the spring constant,
and e is the extension,
The F is her weight = 45 X 0.80
= 36 N