Answer:
A compact car, with mass 725 kg, ... at 115 km/h toward the east. ... b. A second car, with a mass of 2175 kg, has the same momentum. What is its ... Glisens : m = 2175 kg;. D 21,32 xrolka. anknown. r = ? 110.6 mis east
Explanation:
The refrigerator's coefficient of performance is 6.
The heat extracted from the cold reservoir Q cold (i.e., inside a refrigerator) divided by the work W required to remove the heat is known as the coefficient of performance, or COP, of a refrigerator (i.e., the work done by the compressor). The required inside temperature and the outside temperature have a significant impact on the COP.
As the inside temperature of the refrigerator decreases, its coefficient of performance decreases. The coefficient of performance (COP) of refrigeration is always more than 1.
The heat produced in the cold compartment, H = 780.0 J
Work done in ideal refrigerator, W = 130.0 J
Refrigerator's coefficient of performance = H/W
= 780/130
= 6
Therefore, the refrigerator's coefficient of performance is 6.
Energy conservation requires the exhaust heat to be = 780 + 130
= 910 J
Learn more about coefficient here:
brainly.com/question/18915846
#SPJ4
Answer:
"h" signifies Planck's constant
Explanation:
In the equation energy E = h X v
The "h" there signifies Planck's constant
Planck's constant is a value, that shows the rate at which the energy of a photon increases/decreases, as the frequency of its electromagnetic wave changes.
It was named after Max Planck who discovered this unique relationship between the energy of a light wave and its frequency.
Planck's constant, "h" is usually expressed in Joules second
Planck's constant = 
Answer:
19 m/s
Explanation:
The complete question requires the final speed to be calculated.
Velocity is the rate and direction at which an object moves. Acceleration is the rate of change of velocity per unit time and can be calculated by the difference in velocity over a given time.
For this question, first the unknown acceleration must be calculated and used to determine the final velocity
Step 1: Calculate the acceleration




Step 2: Calculate the velocity using the acceleration calculated above


