The ball rolled for 13.2 s
<h3>Further explanation</h3>
Speed is scalar and no direction

A bowling ball rolls 33 m, with average speed = 2.5 m/s
So elapsed time :

Conduction is a mode of transfer of heat there
Answer:
n physics, the kinetic energy (KE) of an object is the energy that it possesses due to its motion.[1] It is defined as the work needed to accelerate a body of a given mass from rest to its stated velocity. Having gained this energy during its acceleration, the body maintains this kinetic energy unless its speed changes. The same amount of work is done by the body when decelerating from its current speed to a state of rest.
In classical mechanics, the kinetic energy of a non-rotating object of mass m traveling at a speed v is {\displaystyle {\begin{smallmatrix}{\frac {1}{2}}mv^{2}\end{smallmatrix}}}{\begin{smallmatrix}{\frac {1}{2}}mv^{2}\end{smallmatrix}}. In relativistic mechanics, this is a good approximation only when v is much less than the speed of light.
The standard unit of kinetic energy is the joule, while the imperial unit of kinetic energy is the foot-pound.
Explanation:
Suppose car A is moving with a velocity Va, and car b with a velocity Vb,
According the principle of conservation of momentum:
Va x Ma + Vb x Mb = (Ma + Mb) V
V = (Va x Ma + Vb x Mb)/(Ma +Mb)
V = speed of cars after coupling
V = (Va x 20 mg + Vb x 15 mg)/(20 mg + 15 mg)
Put in the values of Va and Vb, and get the V
D.
The reading between 7N and 8N would have to be 7.5N. Answers A and B are much to small and answer C is way to big.