Im not so sure but it should be the
instantaneous speed
<span>(c) energy travels from the object at higher temperature
to the object at lower temperature.
Size and mass have no effect.</span>
Answer:
a) - 72.5°c
b) pressure = 3625.13 Pa
c) density = 0.063 kg/m^3
d) it is a subsonic aircraft
Explanation:
a) Determine Temperature
Temperature at 19.5 km ( 19500 m )
T = -131 + ( 0.003 * altitude in meters )
= -131 + ( 0.003 * 19500 ) = - 72.5°c
b) Determine pressure and density at 19.5 km altitude
Given :
Po (atmospheric pressure at sea level ) = 101kpa
R ( gas constant of air ) = 0.287 KJ/Kgk
T = -72.5°c ≈ 200.5 k
pressure = 3625.13 Pa
hence density = 0.063 kg/m^3
attached below is the remaining part of the solution
C) determine if the aircraft is subsonic or super sonic
Velocity ( v ) =
=
= 283.8 m/s
hence it is a subsonic aircraft
Answer: C Plane
Explanation: According to Newton's law, gravitational force is proportional to the product of masses and inversely proportional to the square of distance between them.
Gravitational force depends on mass. The bigger the mass, the more the magnitude of the gravitational force. Since plane is assume to have the highest mass in the options, we can therefore conclude that plane will experience the highest gravitational force.
Answer:
When an electron is hit by a photon of light, it absorbs the quanta of energy the photon was carrying and moves to a higher energy state. One way of thinking about this higher energy state is to imagine that the electron is now moving faster, (it has just been "hit" by a rapidly moving photon)
A photon is a quantum of EM radiation. Its energy is given by E = hf and is related to the frequency f and wavelength λ of the radiation by. E=hf=hcλ(energy of a photon) E = h f = h c λ (energy of a photon) , where E is the energy of a single photon and c is the speed of light.