A catalyst
A catalyst can be in many forms
<span>Metalloids have the properties of metals and nonmetals.</span>
Answer:
single replacement
Explanation:
Step 1: Data given
single replacement = A reaction in which one element replaces a similar element in a compound. For example, a metal replaces an other metal.
The general form of a single-replacement (also called single-displacement) reaction is:
A+BC→AC+B
Decomposition = a reaction in which a compound breaks down into two or more simpler substances. The general form of a decomposition reaction is:
AB→A+B
Synthesis = A reaction that occurs when one or more compounds combines to form a complex compound:
A + B → AB
Double replacement: a reaction in which the positive and negative ions of two ionic compounds exchange places to form two new compounds.
The general form of a double-replacement reaction is:
AB+CD→AD+BC
Combustion reaction = a reaction in which a substance reacts with oxygen gas, releasing energy in the form of light and heat. Combustion reactions must involve O2 as one reactant.
The reaction Zn + 2HCl → ZnCl2 + H2
⇒ Does not involve O2 = NOT a combustion reaction
⇒ The compounds do not form a complex compound = NOT a synthesis
⇒ A compound does not break down into smaller substances = NOT a decomposition
⇒ There is a replacement between Zn and H. This is a <u>single replacement</u>, not a double replacement reaction.
Answer: ΔG=ΔG0+RTlnQ where Q is the ratio of concentrations (or activities) of the products divided by the reactants. Under standard conditions Q=1 and ΔG=ΔG0
Explanation: hope this helps im sorry if i didnt
Percentage yield = (actual yield / theoretical yield) x 100%
The balanced equation for the decomposition is,
2Na₃(CO₃)(HCO₃)·2H₂O(s) → 3Na₂CO₃(s) + CO₂(g) + 5H₂<span>
O(g)The
stoichiometric ratio between </span>Na₃(CO₃)(HCO₃)·2H₂O(s) and Na₂CO₃(s) is
2 : 3The decomposed mass of Na₃(CO₃)(HCO₃)·2H₂O(s) = 1000 kg
= 1000 x 10³ g
Molar mass of Na₃(CO₃)(HCO₃)·2H₂O(s) = 226 g mol⁻¹
moles of Na₃(CO₃)(HCO₃)·2H₂O(s) = mass / molar mass
= 1000 x 10³ g / 226 g mol⁻¹
= 4424.78 mol
Hence, moles of Na₂CO₃ formed = 4424.78 mol x

= 6637.17 mol
Molar mass of Na₂CO₃ = 106 g mol⁻¹
Hence, mass of Na₂CO₃ = 6637.17 mol x 106 g mol⁻¹
= 703540.02 g
= 703.540 kg
Hence, the theoretical yield of Na₂CO₃ = 703.540 kg
Actual yield of Na₂CO₃ = 650 kg
Percentage yield = (650 kg / 703.540 kg) x 100%
=
92.34%