Answer:
solids are strong and compact, they are not compressable.
liquids are flexible and less compacts they can not be coompresed
Answer:
19.99 kg m²/s
Explanation:
Angular Momentum (L) is defined as the product of the moment of Inertia (I) and angular velocity (w)
L = m r × v.
r and v are perpendicular to each other,
where r = lsinθ.
l = 2.4 m
θ= 34°
g = 9.8 m/s² and m = 5 kg
resolving using newtons second law in the vertical and horizontal components.
T cos θ − m g = 0
T sin θ − mw² lsin θ = 0
where T is the force with which the wire acts on the bob
w = √g / lcosθ
= √ 9.8 / 2.4 ×cos 34
= 2.2193 rad/s
the angular momentum L = mr× v
= mw (lsin θ)²
= 5 × 2.2193 (2.4 ×sin 34°)²
=19.99 kg m²/s
If ball remains in air for total time T = 0.85 s
this is also known as time of flight
In order to find the time of flight we can use kinematics

so for complete motion its displacement in y direction will be zero



now we know that net velocity of the ball is 8 m/s
while is y direction component we got is vy = 4.165 m/s
now by component method we can say




so it is projected at an angle of 31.4 degree above horizontal
Answer:
initial velocity = 0 m/s
final velocity = 4.92 m/s
constant acceleration so,
(a) average velocity =
(initial velocity + final velocity)/2
(b) distance = average velocity x time
substitute and calculate
Explanation:
HOOE ITS HELP ;)
Answer:
1) q₁ = 12.987 cm
, b) L = 17.987 cm
, c) m = 179.87
Explanation:
We can solve the geometric optics exercises with the equation of the constructor
1 / f = 1 / p + 1 / q
where f is the focal length, p and q are the distance to the object and the image respectively.
Let's apply this equation to our case
1) f = 5mm = 0.5 cm
p₁ = 5.2 mm = 0.52 cm
h = 0.1 mm = 0.01 cm
1 / q₁ = 1 / f- 1 / p
1 / q₁ = 1 / 0.5 - 1 / 0.52 = 2 - 1.923
1 / q₁ = 0.077
q₁ = 12.987 cm
2) in this part they tell us that the eyepiece creates an image at infinity, therefore the object that comes from being at the focal length of the eyepiece
p₂ = 5 cm
The absolute thing that goes through the two lenses is
L = q₁ + p₂
L = 12.987 +5
L = 17.987 cm
3) This lens configuration forms the so-called microscope, whose expression for the magnifications
m = -L / f_target 25 cm / f_ocular
m = - 17.987 / 0.5 25 / 5.0
m = 179.87