1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Brut [27]
3 years ago
5

Water is boiling in a clear pot, as shown in the picture. How do the water molecules closest to the burner compare to the water

molecules closest to the surface of the liquid? They are more spread out and moving faster than those at the surface. They are closer together and moving faster than those at the surface. They are more spread out and moving slower than those at the surface. They are closer together and moving slower than those at the surface.
Physics
2 answers:
Dmitriy789 [7]3 years ago
7 0

Answer:

they are more spread out and moving faster than those at the surface

Explanation:

fast easy and you don't have to read a whole book for the answer

Galina-37 [17]3 years ago
5 0

The kinetic molecular theory of gases described when I was in College "Gases" gives a reasonably accurate description of the behavior of gases. A similar model can be applied to liquids, but it must take into account the nonzero volumes of particles and the presence of strong intermolecular attractive forces.

In a gas, the distance between molecules, whether monatomic or polyatomic, is very large compared with the size of the molecules; thus gases have a low density and are highly compressible. In contrast, the molecules in liquids are very close together, with essentially no empty space between them. As in gases, however, the molecules in liquids are in constant motion, and their kinetic energy (and hence their speed) depends on their temperature. We begin our discussion by examining some of the characteristic properties of liquids to see how each is consistent with a modified kinetic molecular description.

Density

The molecules of a liquid are packed relatively close together. Consequently, liquids are much denser than gases. The density of a liquid is typically about the same as the density of the solid state of the substance. Densities of liquids are therefore more commonly measured in units of grams per cubic centimeter (g/cm3) or grams per milliliter (g/mL) than in grams per liter (g/L), the unit commonly used for gases.

Molecular Order

Liquids exhibit short-range order because strong intermolecular attractive forces cause the molecules to pack together rather tightly. Because of their higher kinetic energy compared to the molecules in a solid, however, the molecules in a liquid move rapidly with respect to one another. Thus unlike the ions in the ionic solids discussed in Chapter 8 "Ionic versus Covalent Bonding", Section 8.2 "Ionic Bonding", the molecules in liquids are not arranged in a repeating three-dimensional array. Unlike the molecules in gases, however, the arrangement of the molecules in a liquid is not completely random.

Compressibility

Liquids have so little empty space between their component molecules that they cannot be readily compressed. Compression would force the atoms on adjacent molecules to occupy the same region of space.

Thermal Expansion

The intermolecular forces in liquids are strong enough to keep them from expanding significantly when heated (typically only a few percent over a 100°C temperature range). Thus the volumes of liquids are somewhat fixed. Notice from Table 11.1 "The Density of Water at Various Temperatures" that the density of water, for example, changes by only about 3% over a 90-degree temperature range.

You might be interested in
Jada is rowing a boat across a river that has a current of 5 m/s in the ˆ j direction. Leanne, standing on the shore, observes J
olchik [2.2K]

Answer: d. 8.25 m/s

Explanation:

We are given that Current= 5 m/s in j direction

Velocity= 8 m/s i + 3 m/s j

Now, we have to find Jada's speed with respect to the water.

First we find Jada's velocity with respect to water

v= (8 i + 3 j) - (5 j)

v= 8i - 2 j

To find the speed, we take the magnitude of this velocity vector we have

|v|= \sqrt{(8)^2+(-2)^2}

|v|= \sqrt{68} = 8.246 m/s

which comes out to be around = 8.25 m/s

So option d is correct.

5 0
2 years ago
The plug has a diameter of 30 mm and fits within a rigid sleeve having an inner diameter of 32 mm. Both the plug and the sleeve
Katena32 [7]

Answer:

P=740 KPa

Δ=7.4 mm

Explanation:

Given that

Diameter of plunger,d=30 mm

Diameter of sleeve ,D=32 mm

Length .L=50 mm

E= 5 MPa

n=0.45

As we know that

Lateral strain

\varepsilon _t=\dfrac{D-d}{d}

\varepsilon _t=\dfrac{32-30}{30}

\varepsilon _t=0.0667

We know that

n=-\dfrac{\epsilon _t}{\varepsilon _{long}}

\varepsilon _{long}=-\dfrac{\epsilon _t}{n}

\varepsilon _{long}=-\dfrac{0.0667}{0.45}

\varepsilon _{long}=-0.148

So the axial pressure

P=E\times \varepsilon _{long}

P=5\times 0.148

P=740 KPa

The movement in the sleeve

\Delta =\varepsilon _{long}\times L

\Delta =0.148\times 50

Δ=7.4 mm

6 0
3 years ago
When the play button is pressed, a CD accelerates uniformly from rest to 450 rev/min in 3.0 revolutions. If the CD has a radius
Marina CMI [18]

To solve this problem it is necessary to apply the kinematic equations of angular motion.

Torque from the rotational movement is defined as

\tau = I\alpha

where

I = Moment of inertia \rightarrow \frac{1}{2}mr^2 For a disk

\alpha = Angular acceleration

The angular acceleration at the same time can be defined as function of angular velocity and angular displacement (Without considering time) through the expression:

2 \alpha \theta = \omega_f^2-\omega_i^2

Where

\omega_{f,i} = Final and Initial Angular velocity

\alpha = Angular acceleration

\theta = Angular displacement

Our values are given as

\omega_i = 0 rad/s

\omega_f = 450rev/min (\frac{1min}{60s})(\frac{2\pi rad}{1rev})

\omega_f = 47.12rad/s

\theta = 3 rev (\frac{2\pi rad}{1rev}) \rightarrow 6\pi rad

r = 7cm = 7*10^{-2}m

m = 17g = 17*10^{-3}kg

Using the expression of angular acceleration we can find the to then find the torque, that is,

2\alpha\theta=\omega_f^2-\omega_i^2

\alpha=\frac{\omega_f^2-\omega_i^2}{2\theta}

\alpha = \frac{47.12^2-0^2}{2*6\pi}

\alpha = 58.89rad/s^2

With the expression of the acceleration found it is now necessary to replace it on the torque equation and the respective moment of inertia for the disk, so

\tau = I\alpha

\tau = (\frac{1}{2}mr^2)\alpha

\tau = (\frac{1}{2}(17*10^{-3})(7*10^{-2})^2)(58.89)

\tau = 0.00245N\cdot m \approx 2.45*10^{-3}N\cdot m

Therefore the torque exerted on it is 2.45*10^{-3}N\cdot m

3 0
2 years ago
A 4.44 l container holds 15.4 g of oxygen at 22.55°c. what is the pressure?
padilas [110]
We will use the ideal gas equation:
PV = nRT, where n is moles and equal to mass / Mr
P = mRT/MrV
P = 15.4 x 8.314 x (22.55 + 273) / 32 x 4.44
P = 266.3 kPa
5 0
3 years ago
An electron with a speed of 1.7 × 107 m/s moves horizontally into a region where a constant vertical force of 4.9 × 10-16 N acts
Alex Ar [27]

Answer:

 y = 77.74 10⁻⁵ m

Explanation:

For this exercise we can use Newton's second law

        F = m a

        a = F / m

        a = 4.9 10⁻¹⁶ / 9.1 10⁻³¹

        a = 0.538 10¹⁵ m / s

This is the vertical acceleration of the electron.

Now let's use kinematics to find the time it takes to move the

         x= 29 mm = 29 10⁻³ m

On the x axis

            v = x / t

            t = x / v

            t = 29 10⁻³ / 1.7 10⁷

            t = 17 10⁻¹⁰ s

Now we can look for vertical distance at this time.

            y = v_{oy} t + ½ a t²

            y = 0 + ½ 0.538 10¹⁵ (17 10⁻¹⁰)²

            y = 77.74 10⁻⁵ m

3 0
3 years ago
Read 2 more answers
Other questions:
  • How high is the rocket when the canister hits the launch pad, assuming that the rocket does not change its acceleration?
    15·1 answer
  • Which of the following is most needed for cosmotologists to study the age of the universe
    7·1 answer
  • Graphs do not need to have a title.true or false
    11·2 answers
  • A crowbar having the length of 1.75m is used to balance a load between the fulcrum and the load is 0.5m calculate MA
    5·1 answer
  • A block of unknown mass is attached to a spring with a spring constant of 7.00 N/m 2 and undergoes simple harmonic motion with a
    10·1 answer
  • Human muscles have an efficiency of about __________. A. 9 to 17% B. 18 to 26% C. 27 to 35% D. 36 to 44%
    7·2 answers
  • What will happen if a low massive main sequence star runs out of hydrogen fuel?​
    10·1 answer
  • A dog is facing a concave mirror. It is standing closer to the mirror than the focal point. From which location will the reflect
    5·2 answers
  • 26. The ice on the front windshield of the car had formed when moisture condensed during the night. The ice melted quickly after
    12·1 answer
  • 3. A block with a force of the Earth of -300. N is moved at constant velocity over a horizontal surface by a force of +50.0 N ap
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!