<span> Let’s determine the initial momentum of each car.
#1 = 998 * 20 = 19,960
#2 = 1200 * 17 = 20,400
This is this is total momentum in the x direction before the collision. B is the correct answer. Since momentum is conserved in both directions, this will be total momentum is the x direction after the collision. To prove that this is true, let’s determine the magnitude and direction of the total momentum after the collision.
Since the y axis and the x axis are perpendicular to each other, use the following equation to determine the magnitude of their final momentum.
Final = √(x^2 + y^2) = √(20,400^2 + 19,960^2) = √814,561,600
This is approximately 28,541. To determine the x component, we need to determine the angle of the final momentum. Use the following equation.
Tan θ = y/x = 19,960/20,400 = 499/510
θ = tan^-1 (499/510)
The angle is approximately 43.85˚ counter clockwise from the negative x axis. To determine the x component, multiply the final momentum by the cosine of the angle.
x = √814,561,600 * cos (tan^-1 (499/510) = 20,400</span>
The ball is travelling faster when the two objects hits the level ground below.
<h3>Time of motion of the objects</h3>
The time of motion of the objects depends on height and initial velocity of projection of the objects.
The stone has no initial vertical velocity while the ball has initial vertical velocity.
Thus, the ball is travelling faster when the two objects hits the level ground below.
Learn more about time of motion here: brainly.com/question/2364404
#SPJ1