Answer:
k_max = 31.82 w/mk
k_min = 17.70 w/mk
Explanation:
a) the maximum thermal conductivity is given as

where k_m is thermal conductvitiy of metal
k_p is thermal conductvitiy of carbide
v_m = proportion of metal in the cement = 0.17
v_p = proportion of carbide in the cement = 0.83
= 66*0.17 + 28*0.83
k_max = 31.82 w/mk
b) the minimum thermal conductivity is given as

= \frac{28+66}{28*0.17 +66*0.83}
k_min = 17.70 w/mk
The acceleration of a 0.90 g drop of blood in the fingertips at the bottom of the swing is the sum of the acceleration of the movement of the finger and the acceleration of gravity. In this case, this is different when the finger goes down, since the acceleration now becomes the difference between the two.
Waves can be described using a number of different characteristics of a wave. Wavelength and frequency are two such characteristics. The relationship between wavelength and frequency is that the frequency of a wave multiplied by its wavelength gives the speed of the wave
Answer:
Puesto que la energia cinética traslacional es mucho mayor que la capacidad del chaleco antibalas, la bala atravesaría el chaleco antibalas.
Explanation:
Un chaleco antibalas soporta el disparo de una bala disipando la energía de esta última a través de su propio material. Si sabemos que el chaleco antibalas soporta 120 joules de energía, cabe saber si la energía cinética traslacional es igual o inferior a ese límite, significando que la bala no atravesaría el chaleco.
La energía cinética traslacional de la bala (
), in joules, queda expresada con la siguiente fórmula:
(1)
Donde:
- Masa de la bala, en kilogramos.
- Rapidez de la bala, en metros por segundo.
Si sabemos que
y
, entonces la energía cinética traslacional de la bala es:

Puesto que la energia cinética traslacional es mucho mayor que la capacidad del chaleco antibalas, la bala atravesaría el chaleco antibalas.